首页> 外文期刊>Journal of circuits, systems and computers >Genetic Algorithm-Based Multi-Objective Optimization for Statistical Yield Analysis Under Parameter Variations
【24h】

Genetic Algorithm-Based Multi-Objective Optimization for Statistical Yield Analysis Under Parameter Variations

机译:参数变化下基于遗传算法的多目标统计分析优化

获取原文
获取原文并翻译 | 示例

摘要

Due to process scaling, variability in process, voltage, and temperature (PVT) parameters leads to a significant parametric yield loss, and thus impacts the optimization for circuit designs seriously. Previous parametric yield optimization algorithms are limited to optimizing either power yield or timing yield separately, without combining them together for simultaneous optimization. However, neglecting the negative correlation between the performance metrics, such as power and timing measurements, will bring on significant accuracy loss. This paper suggests an efficient multi-objective optimization framework based on Bayes' theorem, Markov chain method, and an NSGA-II-based genetic algorithm. In the proposed framework, power and timing yields are considered as the optimization objectives to be optimized simultaneously, in order to maintain the negative correlation between power and timing metrics. First, the framework explicitly expresses both leakage current and gate delay in terms of the underlying PVT parameter variations. Then, parametric yields for both metrics are predicted by the computation of cumulative distribution function (CDF) based on Bayes' theorem and Markov chain method. Finally, a NSGA-II-based genetic algorithm is suggested to solve power timing optimization problem and generate well-distributed Pareto solutions. Experimental results demonstrate that the proposed multi-objective optimization procedure is able to provide the designer with guaranteed trade-off information between power and timing yields and give them the flexibility in choosing the most appropriate solution(s).
机译:由于工艺规模的限制,工艺,电压和温度(PVT)参数的可变性会导致明显的参数良率损失,从而严重影响电路设计的优化。先前的参数良率优化算法仅限于分别优化功率良率或时序良率,而无需将它们组合在一起进行同时优化。但是,如果忽略性能指标(如功率和时序测量)之间的负相关关系,则会导致严重的精度损失。本文提出了一种基于贝叶斯定理,马尔可夫链方法和基于NSGA-II的遗传算法的高效多目标优化框架。在所提出的框架中,功率和时序产量被认为是要同时优化的优化目标,以便维持功率和时序度量之间的负相关性。首先,该框架根据潜在的PVT参数变化明确表示泄漏电流和栅极延迟。然后,通过基于贝叶斯定理和马尔可夫链方法的累积分布函数(CDF)的计算来预测两个指标的参数收益。最后,提出了一种基于NSGA-II的遗传算法来解决电源时序优化问题并生成分布均匀的Pareto解。实验结果表明,所提出的多目标优化程序能够为设计人员提供有保证的功率和时序产量之间的折衷信息,并使他们能够灵活地选择最合适的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号