首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >A Gain-Controlled, Low-Leakage Dickson Charge Pump for Energy-Harvesting Applications
【24h】

A Gain-Controlled, Low-Leakage Dickson Charge Pump for Energy-Harvesting Applications

机译:增益控制,低泄漏Dickson电荷泵,用于能量收集应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a single-stage power management unit to boost and regulate a low supply voltage for CMOS system-on-chip (SoC) applications. It consists of low-leakage, enhanced Dickson charge pump (DCP) that utilizes both stage and frequency modulation (FM) techniques to achieve high efficiency and lower area. In addition, the proposed design uses an enhanced stage-switch structure for the charge pump, which significantly reduces the cross-stage leakage. A stage number controller is used to control the gain of the charge pump by changing the number of stages based on the desired output voltage. FM is utilized to further fine-tune the output voltage through a closed-loop control based on a predetermined reference voltage. Silicon measurement results for the four-stage charge pump in 65-nm CMOS technology show a maximum end-to-end efficiency of 66% at an input voltage of 0.7 V and an output power of 27 mu W. The proposed design achieved more than a 100x reduction in leakage compared to traditional DCP. The system supports a range of load currents between 0.1 and 34 mu A with a maximum operating frequency of 1.8 MHz. The proposed system supports an input voltage range of 0.55-0.7 V which makes it an excellent candidate for solar and thermal energy-harvesting applications targeting low-power internet-of-things SOC.
机译:本文提出了一种单级电源管理单元,以提升和调节CMOS片上系统(SoC)应用的低电源电压。它由低泄漏,增强的Dickson电荷泵(DCP)组成,该电荷泵同时利用了级和调频(FM)技术来实现高效率和较小的面积。另外,所提出的设计对电荷泵使用了增强的级开关结构,从而大大减少了跨级泄漏。级数控制器用于通过基于所需的输出电压改变级数来控制电荷泵的增益。 FM用于基于预定参考电压通过闭环控制进一步微调输出电压。 65纳米CMOS技术的四级电荷泵的硅测量结果显示,在0.7 V的输入电压和27μW的输出功率下,最大端对端效率为66%。与传统的DCP相比,泄漏量减少了100倍。该系统支持的负载电流范围为0.1至34μA,最大工作频率为1.8 MHz。拟议的系统支持0.55-0.7 V的输入电压范围,这使其成为针对低功耗物联网SOC的太阳能和热能收集应用的极佳候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号