首页> 外文期刊>User modeling and user-adapted interaction >The role of human factors in stereotyping behavior and perception of digital library users: a robust clustering approach
【24h】

The role of human factors in stereotyping behavior and perception of digital library users: a robust clustering approach

机译:人为因素在刻板印象行为和数字图书馆用户感知中的作用:可靠的聚类方法

获取原文
获取原文并翻译 | 示例

摘要

To deliver effective personalization for digital library users, it is necessary to identify which human factors are most relevant in determining the behavior and perception of these users. This paper examines three key human factors: cognitive styles, levels of expertise and gender differences, and utilizes three individual clustering techniques: k-means, hierarchical clustering and fuzzy clustering to understand user behavior and perception. Moreover, robust clustering, capable of correcting the bias of individual clustering techniques, is used to obtain a deeper understanding. The robust clustering approach produced results that highlighted the relevance of cognitive style for user behavior, i.e., cognitive style dominates and justifies each of the robust clusters created. We also found that perception was mainly determined by the level of expertise of a user. We conclude that robust clustering is an effective technique to analyze user behavior and perception.
机译:为了为数字图书馆用户提供有效的个性化设置,有必要确定哪些人为因素与确定这些用户的行为和感知最为相关。本文研究了三个关键的人为因素:认知风格,专业水平和性别差异,并利用三种独立的聚类技术:k均值,层次聚类和模糊聚类来理解用户行为和感知。此外,使用能够纠正各个聚类技术偏差的鲁棒聚类来获得更深刻的理解。鲁棒聚类方法产生的结果突出了认知风格与用户行为的相关性,即认知风格主导并证明了所创建的每个鲁棒聚类的合理性。我们还发现,感知主要取决于用户的专业水平。我们得出结论,健壮的聚类是分析用户行为和感知的有效技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号