首页> 外文期刊>User modeling and user-adapted interaction >The relative impact of student affect on performance models in a spoken dialogue tutoring system
【24h】

The relative impact of student affect on performance models in a spoken dialogue tutoring system

机译:学生的相对影响对口语对话辅导系统中的绩效模型的影响

获取原文
获取原文并翻译 | 示例

摘要

We hypothesize that student affect is a useful predictor of spoken dialogue system performance, relative to other parameters. We test this hypothesis in the context of our spoken dialogue tutoring system, where student learning is the primary performance metric. We first present our system and corpora, which have been annotated with several student affective states, student correctness and discourse structure. We then discuss unigram and bigram parameters derived from these annotations. The unigram parameters represent each annotation type individually, as well as system-generic features. The bigram parameters represent annotation combinations, including student state sequences and student states in the discourse structure context. We then use these parameters to build learning models. First, we build simple models based on correlations between each of our parameters and learning. Our results suggest that our affect parameters are among our most useful predictors of learning, particularly in specific discourse structure contexts. Next, we use the PARADISE framework (multiple linear regression) to build complex learning models containing only the most useful subset of parameters. Our approach is a value-added one; we perform a number of model-building experiments, both with and without including our affect parameters, and then compare the performance of the models on the training and the test sets. Our results show that when included as inputs, our affect parameters are selected as predictors in most models, and many of these models show high generalizability in
机译:我们假设相对于其他参数,学生的情感是口语对话系统性能的有用预测指标。我们在口语对话辅导系统中测试了这一假设,其中学生学习是主要的绩效指标。我们首先介绍我们的系统和语料库,并用几种学生的情感状态,学生的正确性和话语结构进行注释。然后,我们讨论从这些注释派生的unigram和bigram参数。 unigram参数分别代表每种注释类型以及系统通用功能。 bigram参数表示注释组合,包括话语结构上下文中的学生状态序列和学生状态。然后,我们使用这些参数来构建学习模型。首先,我们基于每个参数和学习之间的相关性来构建简单的模型。我们的结果表明,我们的情感参数是我们最有用的学习预测指标之一,特别是在特定的语篇结构语境中。接下来,我们使用PARADISE框架(多元线性回归)构建仅包含最有用参数子集的复杂学习模型。我们的方法是增值的;我们执行了许多模型构建实验,无论是否包含我们的情感参数,然后在训练和测试集上比较模型的性能。我们的结果表明,在大多数模型中,当将其作为参数输入时,我们的情感参数都被选作预测变量,并且其中许多模型都显示出较高的推广性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号