首页> 外文期刊>User modeling and user-adapted interaction >Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols
【24h】

Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols

机译:具有时间意识的推荐系统:对现有评估协议的全面调查和分析

获取原文

摘要

Exploiting temporal context has been proved to be an effective approach to improve recommendation performance, as shown, e.g. in the Netflix Prize competition. Time-aware recommender systems (TARS) are indeed receiving increasing attention. A wide range of approaches dealing with the time dimension in user modeling and recommendation strategies have been proposed. In the literature, however, reported results and conclusions about how to incorporate and exploit time information within the recommendation processes seem to be contradictory in some cases. Aiming to clarify and address existing discrepancies, in this paper we present a comprehensive survey and analysis of the state of the art on TARS. The analysis show that meaningful divergences appear in the evaluation protocols used-metrics and methodologies. We identify a number of key conditions on offline evaluation of TARS, and based on these conditions, we provide a comprehensive classification of evaluation protocols for TARS. Moreover, we propose a methodological description framework aimed to make the evaluation process fair and reproducible. We also present an empirical study on the impact of different evaluation protocols on measuring relative performances of well-known TARS. The results obtained show that different uses of the above evaluation conditions yield to remarkably distinct performance and relative ranking values of the recommendation approaches. They reveal the need of clearly stating the evaluation conditions used to ensure comparability and reproducibility of reported results. From our analysis and experiments, we finally conclude with methodological issues a robust evaluation of TARS should take into consideration. Furthermore we provide a number of general guidelines to select proper conditions for evaluating particular TARS.
机译:如图所示,利用时间上下文已被证明是改善推荐绩效的有效方法。在Netflix奖竞赛中。意识到时间的推荐系统(TARS)确实受到越来越多的关注。已经提出了处理用户建模和推荐策略中的时间维度的多种方法。但是,在文献中,在某些情况下,有关如何在推荐过程中合并和利用时间信息的报告结果和结论似乎是矛盾的。为了澄清和解决现有的差异,在本文中,我们对TARS的最新技术进行了全面的调查和分析。分析表明,在使用的评估协议中,度量和方法存在有意义的分歧。我们确定了离线评估TARS的许多关键条件,并基于这些条件,为TARS提供了评估协议的全面分类。此外,我们提出了一种方法描述框架,旨在使评估过程公平,可重现。我们还针对不同评估协议对测量著名TARS相对性能的影响进行了实证研究。获得的结果表明,上述评估条件的不同使用导致推荐方法的性能和相对排名值显着不同。他们揭示了需要明确说明用于确保报告结果的可比性和可重复性的评估条件。通过我们的分析和实验,我们最终得出关于方法学问题的结论,应对TARS进行有力的评估。此外,我们提供了许多通用准则来选择适当的条件来评估特定的TARS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号