首页> 外文期刊>User modeling and user-adapted interaction >Statistical models for unobtrusively detecting abnormal periods of inactivity in older adults
【24h】

Statistical models for unobtrusively detecting abnormal periods of inactivity in older adults

机译:统计模型可用于无障碍地检测老年人的不活跃异常时期

获取原文
获取原文并翻译 | 示例

摘要

The number of elderly people requiring different levels of care in their home has increased in recent times, with further increases expected. User studies show that the main concern of elderly people and their families is "fall detection and safe movement in the house", while eschewing intrusive monitoring devices. We view abnormally long periods of inactivity as indicators of unsafe situations, and present three models of the distribution of inactivity periods obtained from unintrusive sensor observations. The performance of these models was evaluated on two real-life datasets, and compared with that of a state-of-the-art system, with our models outperforming this system.
机译:近年来,在家中需要不同程度照料的老年人数量有所增加,并且有望进一步增加。用户研究表明,老年人及其家人的主要关注点是“避免跌倒并确保房屋安全移动”,同时避免使用侵入式监视设备。我们将异常长时间的不活动时间视为不安全情况的指标,并提出了从非侵入式传感器观察获得的不活动时间分布的三种模型。在两个真实的数据集上评估了这些模型的性能,并与最新系统的性能进行了比较,我们的模型优于该系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号