首页> 外文期刊>User modeling and user-adapted interaction >Recommender systems based on user reviews: the state of the art
【24h】

Recommender systems based on user reviews: the state of the art

机译:基于用户评论的推荐系统:最新技术

获取原文

摘要

In recent years, a variety of review-based recommender systems have been developed, with the goal of incorporating the valuable information in user-generated textual reviews into the user modeling and recommending process. Advanced text analysis and opinion mining techniques enable the extraction of various types of review elements, such as the discussed topics, the multi-faceted nature of opinions, contextual information, comparative opinions, and reviewers' emotions. In this article, we provide a comprehensive overview of how the review elements have been exploited to improve standard content-based recommending, collaborative filtering, and preference-based product ranking techniques. The review-based recommender system's ability to alleviate the well-known rating sparsity and cold-start problems is emphasized. This survey classifies state-of-the-art studies into two principal branches: review-based user profile building and review-based product profile building. In the user profile sub-branch, the reviews are not only used to create term-based profiles, but also to infer or enhance ratings. Multi-faceted opinions can further be exploited to derive the weight/value preferences that users place on particular features. In another sub-branch, the product profile can be enriched with feature opinions or comparative opinions to better reflect its assessment quality. The merit of each branch of work is discussed in terms of both algorithm development and the way in which the proposed algorithms are evaluated. In addition, we discuss several future trends based on the survey, which may inspire investigators to pursue additional studies in this area.
机译:近年来,已经开发了各种基于评论的推荐系统,其目标是将用户生成的文本评论中的有价值信息纳入用户建模和推荐过程。先进的文本分析和观点挖掘技术可以提取各种类型的评论元素,例如讨论的主题,观点的多面性,上下文信息,比较观点和评论者的情绪。在本文中,我们提供了有关如何利用评论元素来改进基于内容的标准推荐,协作过滤和基于首选项的产品排名技术的全面概述。强调了基于审阅的推荐系统缓解已知的稀疏性和冷启动问题的能力。这项调查将最新研究分为两个主要分支:基于评论的用户个人资料构建和基于评论的产品个人资料构建。在用户个人资料子分支中,评论不仅用于创建基于术语的个人资料,而且还可以推断或提高评分。可以进一步利用多方面的意见来得出用户对特定功能的偏好。在另一个分支机构中,可以使用功能性意见或比较性意见来丰富产品资料,以更好地反映其评估质量。从算法开发和评估所提出算法的方式两方面讨论了每个工作分支的优点。此外,我们根据调查结果讨论了几种未来的趋势,这可能会激发研究人员在这一领域进行更多的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号