首页> 外文期刊>User modeling and user-adapted interaction >Coherence and inconsistencies in rating behavior: estimating the magic barrier of recommender systems
【24h】

Coherence and inconsistencies in rating behavior: estimating the magic barrier of recommender systems

机译:评分行为的连贯性和前后不一致:估算推荐系统的魔力壁垒

获取原文
获取原文并翻译 | 示例

摘要

Recommender Systems have to deal with a wide variety of users and user types that express their preferences in different ways. This difference in user behavior can have a profound impact on the performance of the recommender system. Users receive better (or worse) recommendations depending on the quantity and the quality of the information the system knows about them. Specifically, the inconsistencies in users’ preferences impose a lower bound on the error the system may achieve when predicting ratings for one particular user—this is referred to as the magic barrier . In this work, we present a mathematical characterization of the magic barrier based on the assumption that user ratings are afflicted with inconsistencies—noise. Furthermore, we propose a measure of the consistency of user ratings (rating coherence) that predicts the performance of recommendation methods. More specifically, we show that user coherence is correlated with the magic barrier; we exploit this correlation to discriminate between easy users (those with a lower magic barrier) and difficult ones (those with a higher magic barrier). We report experiments where the recommendation error for the more coherent users is lower than that of the less coherent ones. We further validate these results by using two public datasets, where the necessary data to identify the magic barrier is not available, in which we obtain similar performance improvements.
机译:推荐系统必须处理各种各样的用户和以不同方式表达其偏好的用户类型。用户行为的这种差异可能会对推荐系统的性能产生深远影响。用户会收到更好(或更差)的建议,具体取决于系统知道的有关它们的信息的数量和质量。具体来说,用户偏好不一致会给系统在预测一个特定用户的收视率时可能达到的错误施加下限(这被称为魔术屏障)。在这项工作中,我们基于用户评分受到不一致(噪声)困扰的假设,对魔术屏障进行了数学表征。此外,我们提出了一种对用户评分的一致性(评分一致性)进行衡量的方法,该方法可预测推荐方法的效果。更具体地说,我们证明了用户的连贯性与魔幻屏障相关。我们利用这种相关性来区分简单用户(魔法屏障较低的用户)和困难用户(魔法屏障较高的用户)。我们报告了一些实验,其中,对连贯性较高的用户的推荐错误低于对连贯性较低的用户的推荐错误。我们通过使用两个公共数据集进一步验证了这些结果,在这些数据集中,没有必要的数据来识别魔障,我们在其中获得了类似的性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号