首页> 外文期刊>User modeling and user-adapted interaction >Interplay between upsampling and regularization for provider fairness in recommender systems
【24h】

Interplay between upsampling and regularization for provider fairness in recommender systems

机译:在推荐系统中的提供商公平之间的上采样与正常化之间的相互作用

获取原文
获取原文并翻译 | 示例

摘要

Considering the impact of recommendations on item providers is one of the duties of multi-sided recommender systems. Item providers are key stakeholders in online platforms, and their earnings and plans are influenced by the exposure their items receive in recommended lists. Prior work showed that certain minority groups of providers, characterized by a common sensitive attribute (e.g., gender or race), are being disproportionately affected by indirect and unintentional discrimination. Our study in this paper handles a situation where (ⅰ) the same provider is associated with multiple items of a list suggested to a user, (ⅱ) an item is created by more than one provider jointly, and (ⅲ) predicted user-item relevance scores are biasedly estimated for items of provider groups. Under this scenario, we assess disparities in relevance, visibility, and exposure, by simulating diverse representations of the minority group in the catalog and the interactions. Based on emerged unfair outcomes, we devise a treatment that combines observation upsampling and loss regularization, while learning user-item relevance scores. Experiments on real-world data demonstrate that our treatment leads to lower disparate relevance. The resulting recommended lists show fairer visibility and exposure, higher minority item coverage, and negligible loss in recommendation utility.
机译:考虑到项目提供商的建议的影响是多边推荐系统的职责之一。物品提供商是在线平台中的主要利益相关者,其收入和计划受到其在推荐清单中收到的曝光的影响。事先工作表明,某些提供者的少数群体,其特征在于普通敏感属性(例如,性别或比赛),这是因间接和无意歧视而受到不成比例的影响。我们的研究在本文中处理了(Ⅰ)与向用户建议的列表的多个项目相关联的情况,(Ⅱ)一个以上的提供商共同创建了一个(Ⅲ)预测用户项相关性分数均估计提供商组项目。在这种情况下,我们通过模拟目录中的少数群体和互动的不同表达来评估相关性,可见性和曝光的差异。基于出现的不公平结果,我们设计了一个结合观察升起和损失正常化的治疗,同时学习用户项目相关性分数。关于现实世界数据的实验表明我们的治疗导致较低的不同相关性。由此产生的建议列表显示了更公平的可见性和曝光率,更高的少数项目覆盖范围,以及推荐效用的忽略损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号