首页> 外文期刊>User modeling and user-adapted interaction >Empirical analysis of session-based recommendation algorithms A comparison of neural and non-neural approaches
【24h】

Empirical analysis of session-based recommendation algorithms A comparison of neural and non-neural approaches

机译:基于会议的推荐算法的实证分析,是神经和非神经方法的比较

获取原文
获取原文并翻译 | 示例

摘要

Recommender systems are tools that support online users by pointing them to potential items of interest in situations of information overload. In recent years, the class of session-based recommendation algorithms received more attention in the research literature. These algorithms base their recommendations solely on the observed interactions with the user in an ongoing session and do not require the existence of long-term preference profiles. Most recently, a number of deep learning-based ("neural") approaches to session-based recommendations have been proposed. However, previous research indicates that today's complex neural recommendation methods are not always better than comparably simple algorithms in terms of prediction accuracy. With this work, our goal is to shed light on the state of the art in the area of session-based recommendation and on the progress that is made with neural approaches. For this purpose, we compare twelve algorithmic approaches, among them six recent neural methods, under identical conditions on various datasets. We find that the progress in terms of prediction accuracy that is achieved with neural methods is still limited. In most cases, our experiments show that simple heuristic methods based on nearest-neighbors schemes are preferable over conceptually and computationally more complex methods. Observations from a user study furthermore indicate that recommendations based on heuristic methods were also well accepted by the study participants. To support future progress and reproducibility in this area, we publicly share the session-rec evaluation framework that was used in our research.
机译:推荐系统是支持在线用户的工具,通过将它们指向信息过载情况的潜在感兴趣的项目。近年来,基于会议的推荐算法的阶级在研究文献中得到了更多关注。这些算法仅基于与用户在正在进行的会话中观察到的相互作用的建议,并且不需要长期偏好配置文件的存在。最近,已经提出了许多基于深度学习的(“神经”)的基于会议建议的方法。然而,之前的研究表明,在预测准确性方面,今天的复杂神经推荐方法并不总是比相对简单的算法更好。通过这项工作,我们的目标是在基于会议的建议和神经方法所取得的进展中阐明了最先进的艺术状态。为此目的,我们比较12个算法方法,其中六个最近的神经方法,在各种数据集的相同条件下。我们发现,通过神经方法实现的预测准确性方面的进展仍然有限。在大多数情况下,我们的实验表明,基于最近邻居方案的简单启发式方法在概念上和计算上是更加复杂的方法。来自用户学习的观察结果表明,基于启发式方法的建议也被研究参与者接受了很好的接受。为了支持该领域的未来进展和可重复性,我们公开分享我们研究中使用的会议录制评估框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号