首页> 外文期刊>Transactions of the ASAE >A FASTER ALGORITHM FOR CROP MODEL PARAMETERIZATION BY INVERSE MODELING: SIMULATED ANNEALING WITH DATA REUSE
【24h】

A FASTER ALGORITHM FOR CROP MODEL PARAMETERIZATION BY INVERSE MODELING: SIMULATED ANNEALING WITH DATA REUSE

机译:逆模型的裁剪模型参数化快速算法:带数据重用的模拟退火

获取原文
获取原文并翻译 | 示例

摘要

Some recent studies contend that a simple exhaustive (grid) search through the complete inverse modeling parameter space can be faster than a more sophisticated algorithm such as simulated annealing (SA). The objective of this study was to implement an SA algorithm guaranteed to run worst-case as fast as the grid search. This algorithm resulted from: (1) working on a discrete parameter space similarly to the grid search, and (2) accelerating the optimization by avoiding multiple crop model runs of the same parameter combinations. The latter was achieved by storing simulation results in computer memory and checking for those data before running the model for any given parameter combination. The algorithm was tested relative to a pure grid search in two case studies: a synthetic problem having numerous local minima, and a crop modeling exercise using the CERES-Maize model with two years of observed maize data from 13 locations in a field near Murray, Kentucky. The performance of the modified SA algorithm depended on its parameter values, but a conservative parameter combination was found that ran much faster than the grid search, its run time tending asymptotically to that of the grid search as the number of locations to calibrate grew, while converging to objective function values (and usually parameter values) practically identical to the global optimum, and explaining 97% of the observed yield in the two years used for parameterization. Adoption of this algorithm can reduce parameterization run time on the order of 25% to 75%, depending on the geometry of the simulation domain. Additionally, it can be used to calibrate coupled spatial crop models in which parameter values at one location can affect parameter values at other locations, a task not possible using a grid search. Finally, the proposed algorithm can generate good “first cut” solutions in only a few hundred iterations, an important consideration when designing practical crop simulation applications
机译:最近的一些研究认为,在整个逆建模参数空间中进行简单的穷举(网格)搜索可能比诸如模拟退火(SA)等更复杂的算法更快。这项研究的目的是实现一种SA算法,该算法可以保证在最坏情况下的运行速度与网格搜索一样快。该算法的产生原因是:(1)在类似于网格搜索的离散参数空间上进行工作;(2)通过避免多次运行相同参数组合的作物模型来加速优化。后者是通过将模拟结果存储在计算机内存中并在运行任何给定参数组合的模型之前检查这些数据来实现的。在两个案例研究中,相对于纯网格搜索对算法进行了测试:具有多个局部极小值的合成问题,以及使用CERES-Maize模型进行的作物建模练习,该模型使用了两年的观察数据,这些数据来自默里附近13个地点的玉米,肯塔基州。改进的SA算法的性能取决于其参数值,但发现保守的参数组合的运行速度比网格搜索快得多,其运行时间随着要校准的位置数量的增加而逐渐趋向于网格搜索的运行时间,而收敛到与全局最优值几乎相同的目标函数值(通常是参数值),并解释了用于参数化的两年中观察到的97%的收益。根据仿真域的几何形状,采用该算法可以将参数化运行时间减少25%到75%。此外,它可以用于校准空间作物的耦合模型,其中一个位置的参数值会影响其他位置的参数值,这是使用网格搜索无法完成的任务。最后,所提出的算法仅需几百次迭代就可以生成良好的“初割”解决方案,这是设计实际作物模拟应用程序时的重要考虑因素

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号