首页> 外文期刊>Transactions of the ASABE >Parameterizing Spatial Crop Models with Inverse Modeling: Sources of Error and Unexpected Results
【24h】

Parameterizing Spatial Crop Models with Inverse Modeling: Sources of Error and Unexpected Results

机译:使用逆建模对空间作物模型进行参数化:错误和意外结果的来源

获取原文
获取原文并翻译 | 示例

摘要

The literature to date on inverse modeling-based parameterization of spatial ("distributed") crop models using yield data is dominated by one-dimensional uncoupled models, in which the landscape is divided into cells that do not interchange water. We studied three possible sources of error for uncoupled and spatially coupled distributed crop models: (1) error from biases (towards unrepresentatively wet or dry weather) in the sampling of years of yield data used for the parameterization process, (2) errors due to lack of knowledge of initial soil water conditions, and (3) error from lack of spatial coupling and water transport among different landscape locations. We show analytical evidence that the spatiotemporal infiltration behavior of a simple spatially coupled water balance model cannot be reproduced through a modification of the parameters of an uncoupled model. The corresponding yield prediction limitations of the uncoupled model are confirmed, using an example, both at the parameter estimation and the validation stages. In our example, however, parameter error due to weather biases and the error from lack of knowledge of initial conditions greatly impacted the predictive capability of the spatially coupled model, and had less effect on its uncoupled counterpart. This effect of biased weather has not been reported previously in the crop modeling IM literature. We conclude that the use of spatially coupled distributed crop models requires high-quality data. Practical precision agriculture applications are characterized by uncertain initial conditions and the possibility of biased weather. Under these circumstances, the use of a spatially coupled model may not be justified, especially for low landscape positions
机译:迄今为止,关于使用产量数据基于空间模型(“分布式”)作物模型的基于逆模型的参数化的文献主要由一维非耦合模型主导,在该模型中,景观被划分为不交换水的单元。我们研究了未耦合和空间耦合的分布式作物模型的三种可能的误差源:(1)在用于参数化过程的多年产量数据采样中,由于偏差(偏向于无代表性的潮湿或干旱天气)而产生的误差;(2)由于缺乏对初始土壤水分状况的了解,以及(3)在不同景观位置之间缺乏空间耦合和水分输送而产生的错误。我们显示了分析证据,即简单的空间耦合水平衡模型的时空入渗行为无法通过修改非耦合模型的参数来再现。使用一个示例,在参数估计和验证阶段都确认了未耦合模型的相应产量预测限制。但是,在我们的示例中,由于天气偏差导致的参数误差以及由于缺乏对初始条件的了解而导致的误差极大地影响了空间耦合模型的预测能力,并且对其未耦合模型的影响较小。先前在作物模型IM文献中尚未报道过偏见天气的这种影响。我们得出结论,使用空间耦合的分布式作物模型需要高质量的数据。实际的精确农业应用的特征在于不确定的初始条件和有偏差的天气的可能性。在这种情况下,可能不合理使用空间耦合模型,特别是对于低景观位置

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号