首页> 外文期刊>Transactions of the ASABE >HYPERSPECTRAL IMAGE DATA MINING FOR BAND SELECTION IN AGRICULTURAL APPLICATIONS
【24h】

HYPERSPECTRAL IMAGE DATA MINING FOR BAND SELECTION IN AGRICULTURAL APPLICATIONS

机译:高光谱图像数据挖掘在农业应用中的波段选择

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral remote sensing produces large volumes of data, quite often requiring hundreds of megabytes to gigabytes of memory storage for a small geographical area for one-time data collection. Although the high spectral resolution of hyperspectral data is quite useful for capturing and discriminating subtle differences in geospatial characteristics of the target, it contains redundant information at the band level. The objective of this study was to identify those bands that contain the most information needed for characterizing a specific geospatial feature with minimal redundancy. Band selection is performed with both unsupervised and supervised approaches. Five methods (three unsupervised and two supervised) are proposed and compared to identify hyperspectral image bands to characterize soil electrical conductivity and canopy coverage in agricultural fields. The unsupervised approach includes information entropy measure and first and second derivatives along the spectral axis. The supervised approach selects hyperspectral bands based on supplemental ground truth data using principal component analysis (PCA) and artificial neural network (ANN) based models. Each hyperspectral image band was ranked using all five methods. Twenty best bands were selected by each method with the focus on soil and plant canopy characterization in precision agriculture. The results showed that each of these methods may be appropriate for different applications. The entropy measure and PCA were quite useful for selecting bands with the most information content, while derivative methods could be used for identifying absorption features. ANN measure was the most useful in selecting bands specific to a target characteristic with minimum information redundancy. The results also indicated that a combination of wavebands with different bandwidths will allow use of fewer than 20 bands used in this study to represent the information contained in the top 20 bands, thus reducing image data dimensionality and volume considerably
机译:高光谱遥感产生大量数据,通常需要在一个较小的地理区域内存储数百兆至数千兆字节的内存,才能进行一次数据收集。尽管高光谱数据的高光谱分辨率对于捕获和区分目标的地理空间特征的细微差别非常有用,但它在波段级别包含冗余信息。这项研究的目的是确定那些包含以最小的冗余度表征特定地理空间特征所需信息最多的波段。频带选择是通过无监督和有监督的方法执行的。提出并比较了五种方法(三种无监督和两种监督)来识别高光谱图像带,以表征农田的土壤电导率和冠层覆盖率。无监督方法包括信息熵测度以及沿谱轴的一阶和二阶导数。监督方法使用主成分分析(PCA)和基于人工神经网络(ANN)的模型,根据补充的地面真实数据选择高光谱波段。使用所有五种方法对每个高光谱图像带进行排名。每种方法选择了二十个最佳波段,重点是精确农业中的土壤和植物冠层特征。结果表明,这些方法中的每一种都可能适用于不同的应用程序。熵测度和PCA对于选择信息量最大的频段非常有用,而派生方法可用于识别吸收特征。在选择具有最小信息冗余的目标特性特有的频段时,ANN度量最为有用。结果还表明,具有不同带宽的波段组合将允许使用少于20个波段的数据来表示前20个波段中包含的信息,从而显着降低图像数据的尺寸和体积

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号