首页> 外文期刊>IEEE Transactions on Games >Automated Video Game Testing Using Synthetic and Humanlike Agents
【24h】

Automated Video Game Testing Using Synthetic and Humanlike Agents

机译:使用合成和人类代理的自动视频游戏测试

获取原文
获取原文并翻译 | 示例

摘要

In this article, we present a new methodology that employs tester agents to automate video game testing. We introduce two types of agents-synthetic and humanlike-and two distinct approaches to create them. Our agents are derived from Sarsa and Monte Carlo tree search (MCTS) but focus on finding defects, while traditional game-playing agents focus on maximizing game scores. The synthetic agent uses test goals generated from game scenarios, and these goals are further modified to examine the effects of unintended game transitions. The humanlike agent uses test goals extracted by our proposed multiple greedy-policy inverse reinforcement learning (MGP-IRL) algorithm from tester trajectories. MGP-IRL captures multiple policies executed by human testers. We use our agents to produce test sequences, and run the game with these sequences. At each run, we use an automated test oracle to check for bugs. We analyze the proposed method in two parts-we compare the success of humanlike and synthetic agents in bug finding, and we evaluate the similarity between humanlike agents and human testers. We collected 427 trajectories from human testers using the General Video Game Artificial Intelligence (GVG-AI) framework and created three games with 12 levels that contain 45 bugs. Our experiments reveal that humanlike and synthetic agents compete with human testers' bug finding performances. Moreover, we show that MGP-IRL increases the humanlikeness of agents while improving the bug finding performance.
机译:在本文中,我们介绍了一种新的方法,采用测试人员来自动化视频游戏测试。我们介绍了两种类型的代理商 - 合成和人类,以及两种不同的方法来创造它们。我们的代理商来自Sarsa和Monte Carlo树搜索(MCT),但专注于发现缺陷,而传统的游戏代理专注于最大化游戏分数。合成代理使用从游戏场景生成的测试目标,并进一步修改这些目标以检查意外的游戏转换的影响。人类代理商使用我们提出的多个贪婪政策逆钢筋(MGP-IRL)算法从测试轨道中提取的测试目标。 MGP-IRL捕获人类测试仪执行的多个策略。我们使用代理商生产测试序列,并使用这些序列运行游戏。在每个运行时,我们使用自动测试Oracle来检查错误。我们分析了两部分中提出的方法 - 我们比较人类和合成试剂在错误发现中的成功,我们评估人类代理人和人体测试人员之间的相似性。我们使用一般视频游戏人工智能(GVG-AI)框架收集了427个轨迹,并创建了三场比赛,其中12个级别包含45个错误。我们的实验表明,人类和合成代理商与人类测试人员的错误寻找表演竞争。此外,我们表明MGP-IRL增加了代理的人性化,同时改善了错误发现性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号