首页> 外文期刊>IEEE Transactions on Biometrics, Behavior, and Identity Science >An Automatic System for Unconstrained Video-Based Face Recognition
【24h】

An Automatic System for Unconstrained Video-Based Face Recognition

机译:基于无约束视频的人脸识别的自动系统

获取原文
获取原文并翻译 | 示例

摘要

Although deep learning approaches have achieved performance surpassing humans for still image-based face recognition, unconstrained video-based face recognition is still a challenging task due to large volume of data to be processed and intra/inter-video variations on pose, illumination, occlusion, scene, blur, video quality, etc. In this work, we consider challenging scenarios for unconstrained video-based face recognition from multiple-shot videos and surveillance videos with low-quality frames. To handle these problems, we propose a robust and efficient system for unconstrained video-based face recognition, which is composed of modules for face/fiducial detection, face association, and face recognition. First, we use multi-scale single-shot face detectors to efficiently localize faces in videos. The detected faces are then grouped through carefully designed face association methods, especially for multi-shot videos. Finally, the faces are recognized by the proposed face matcher based on an unsupervised subspace learning approach and a subspace-to-subspace similarity metric. Extensive experiments on challenging video datasets, such as Multiple Biometric Grand Challenge (MBGC), Face and Ocular Challenge Series (FOCS), IARPA Janus Surveillance Video Benchmark (IJB-S) for low-quality surveillance videos and IARPA JANUS Benchmark B (IJB-B) for multiple-shot videos, demonstrate that the proposed system can accurately detect and associate faces from unconstrained videos and effectively learn robust and discriminative features for recognition.
机译:虽然深入学习方法已经实现了基于图像的静态图像的人类的性能超过人类,但由于要处理的大量数据和姿势,照明,遮挡的帧内/间隙/视频间变化,不受约束的基于视频的面部识别仍然是一个具有挑战性的任务。 ,场景,模糊,视频质量等。在这项工作中,我们考虑了从多次视频和监视视频的无限视频对面部识别的具有挑战性的场景,具有低质量帧。为了处理这些问题,我们提出了一种强大而有效的系统,用于无限制的基于视频的面部识别,它由用于面部/基准检测,面部关联和面部识别的模块组成。首先,我们使用多尺度单射击面检测器来有效地本地化视频中的面孔。然后通过精心设计的面关联方法进行检测到的面,特别是对于多拍视频。最后,基于无监督的子空间学习方法和子空间到子空间相似度量,所提出的面部匹配器认可。关于挑战视频数据集的大量实验,如多重生物识别大挑战(MBGC),面部和眼部挑战系列(FOCS),IARPA Janus监视视频基准(IJB-S)用于低质量监视视频和IARPA Janus基准B(IJB- b)对于多拍视频,证明所提出的系统可以准确地检测和关联来自无约束视频的面部,并有效地学习稳定和辨别特征以进行识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号