首页> 外文期刊>IEEE Transactions on Biometrics, Behavior, and Identity Science >Detection of Age-Induced Makeup Attacks on Face Recognition Systems Using Multi-Layer Deep Features
【24h】

Detection of Age-Induced Makeup Attacks on Face Recognition Systems Using Multi-Layer Deep Features

机译:使用多层深度特征检测面部识别系统的年龄诱导的化妆攻击

获取原文
获取原文并翻译 | 示例

摘要

Makeup is a simple and easy instrument that can alter the appearance of a person's face, and hence, create a presentation attack on face recognition (FR) systems. These attacks, especially the ones mimicking ageing, are difficult to detect due to their close resemblance with genuine (non-makeup) appearances. Makeups can also degrade the performance of recognition systems and of various algorithms that use human face as an input. The detection of facial makeups is an effective prohibitory measure to minimize these problems. This work proposes a deep learning-based presentation attack detection (PAD) method to identify facial makeups. We propose the use of a convolutional neural network (CNN) to extract features that can distinguish between presentations with age-induced facial makeups (attacks), and those without makeup (bona-fide). These feature descriptors, based on shape and texture cues, are constructed from multiple intermediate layers of a CNN. We introduce a new dataset AIM (Age Induced Makeups) consisting of 200+ video presentations of old-age makeups and bona-fide, each. Our experiments indicate makeups in AIM result in 14% decrease in the median matching scores of a recent CNN-based FR system. We demonstrate accuracy of the proposed PAD method where 93% presentations in the AIM dataset are correctly classified. In additional testing, it also outperforms existing methods of detection of generic makeups. A simple score-level fusion, performed on the classification scores of shape- and texture-based features, can further improve the accuracy of the proposed makeup detector.
机译:化妆品是一种简单易懂的仪器,可以改变一个人的脸部的外观,因此,为人脸识别(FR)系统创建一个演示攻击。这些攻击,特别是模仿老化的攻击,由于与真正(非化妆)出现的紧密相似,难以检测。化妆品还可以降低识别系统的性能和使用人称作为输入的各种算法。面部化妆的检测是一种有效的禁止措施,以最大限度地减少这些问题。这项工作提出了一种深入的基于学习的演示攻击检测(PAD)方法来识别面部妆容。我们建议使用卷积神经网络(CNN)来提取可以区分具有年龄诱导的面部妆容(攻击)的演示的特征,以及没有化妆的人(Bona-FIDE)。基于形状和纹理线索的这些特征描述符由CNN的多个中间层构成。我们介绍了一个新的DataSet AIM(年龄诱导的化妆),包括200多个古老的化妆和Bona-Fide的视频演示。我们的实验表明,最近基于CNN的FR系统的中位数匹配分数导致瞄准的化妆减少了14%。我们展示了所提出的焊盘方法的准确性,其中AIM数据集中的93%呈现是正确的分类。在额外的测试中,它还优于现有的通用化妆方法。在基于形状和纹理的特征的分类分数上执行的简单得分级融合可以进一步提高所提出的化妆探测器的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号