首页> 外文期刊>Topology and its applications >The depths and the attracting centres for continuous maps on local dendrites with the number of branch points being finite
【24h】

The depths and the attracting centres for continuous maps on local dendrites with the number of branch points being finite

机译:局部树突上连续图的深度和吸引中心,分支点的数量是有限的

获取原文
获取原文并翻译 | 示例

摘要

Let Y be a local dendrite with the number of branch points being finite and f : Y -> Y be continuous. Denote by P(f), R(f), Omega(f) and omega(x, f) the set of periodic points of f, the set of recurrent points of f, the set of non-wandering points of f and the set of omega-limit points of x under f, respectively. Write omega(f) = boolean OR(x is an element of Y)omega(x, f) and omega(n+1)(f) = boolean OR(x is an element of omega)n(f)omega(x, f) and Omega(n+1) = Omega(f vertical bar Omega(n(f))) for any positive integer n. In this paper, we show that Omega(3)(f) = <(R(f))over bar> and the depth of f is at most 3, and omega(3)(f) = omega(2)(f). Furthermore, we show that <(R(f))over bar> = R(f) boolean OR <(P(f))over bar>. (C) 2020 Elsevier B.V. All rights reserved.
机译:令Y为局部枝晶,分支点的数量为有限点,而f:Y-> Y为连续的。用P(f),R(f),Omega(f)和omega(x,f)表示f的周期点集合,f的递归点集合,f的非徘徊点集合和f下x的欧米伽极限点的集合。写omega(f)=布尔OR(x是Y的元素)omega(x,f)和omega(n + 1)(f)=布尔OR(x是omega的元素)n(f)omega(x ,f)和Omega(n + 1)= Omega(f竖线Omega(n(f)))对于任何正整数n。在本文中,我们证明Omega(3)(f)= <(R(f))over bar>,f的深度最大为3,omega(3)(f)= omega(2)(f )。此外,我们显示<(R(f))over bar> = R(f)布尔值或<(P(f))over bar>。 (C)2020 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Topology and its applications》 |2020年第1期|107067.1-107067.9|共9页
  • 作者

  • 作者单位

    Guangxi Univ Finance & Econ Coll Informat Stat Nanning 530003 Peoples R China;

    Guangxi ASEAN Res Ctr Finance & Econ Nanning 530003 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Local dendrite; Depth of centre; Centre;

    机译:局部枝晶中心深度;中央;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号