首页> 外文期刊>Topics in cognitive science >Statistical Models of Natural Images and Cortical Visual Representation
【24h】

Statistical Models of Natural Images and Cortical Visual Representation

机译:自然图像和皮层视觉表示的统计模型

获取原文
获取原文并翻译 | 示例

摘要

A fundamental question in visual neuroscience is: Why are the response properties of visual neurons as they are? A modern approach to this problem emphasizes the importance of adaptation to ecologically valid input, and it proceeds by modeling statistical regularities in ecologically valid visual input (natural images). A seminal model was linear sparse coding, which is equivalent to independent component analysis (ICA), and provided a very good description of the receptive fields of simple cells. Further models based on modeling residual dependencies of the "independent" components have later been introduced. These models lead to emergence of further properties of visual neurons: the complex cell receptive fields, the spatial organization of the cells, and some surround suppression and Gestalt effects. So far, these models have concentrated on the response properties of neurons, but they hold great potential to model various forms of inference and learning.
机译:视觉神经科学中的一个基本问题是:为什么视觉神经元的响应特性如此?解决这个问题的现代方法强调适应生态有效输入的重要性,并且它通过对生态有效视觉输入(自然图像)中的统计规律建模来进行。精简模型是线性稀疏编码,等效于独立成分分析(ICA),并为简单细胞的感受野提供了很好的描述。稍后介绍了基于对“独立”组件的残差依赖建模的其他模型。这些模型导致了视觉神经元的其他特性的出现:复杂的细胞感受野,细胞的空间组织以及某些周围抑制和格式塔效应。到目前为止,这些模型都集中在神经元的响应特性上,但是它们具有为各种形式的推理和学习建模的巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号