首页> 外文期刊>Thin-Walled Structures >On lower confidence bound improvement matrix-based approaches for multiobjective Bayesian optimization and its applications to thin-walled structures
【24h】

On lower confidence bound improvement matrix-based approaches for multiobjective Bayesian optimization and its applications to thin-walled structures

机译:基于较低的置信性贝叶斯优化的基于较低的置信性改善矩阵,其应用于薄壁结构

获取原文
获取原文并翻译 | 示例

摘要

In engineering practice, most design criteria require time-consuming functional evaluation. To tackle such design problems, multiobjective Bayesian optimization has been widely applied to generation of optimal Pareto solutions. However, improvement function-based expected improvement (EI) and the hypervolume improvementbased lower confidence bound (LCB) infill-criteria are frequently criticized for their high computational cost. To address this issue, this study proposes a novel approach for developing multiobjective LCB criteria on the basis of LCB improvement matrix. Specifically, three cheap yet efficient infill-criteria are suggested by introducing three different improvement functions (namely, hypervolume improvement, Euclidean distance and maximin distance) that assemble the improvement matrix to a scalar value, which is then maximized for adding solution points sequentially. All these criteria have closed-form expressions and can maintain the anticipated properties, thereby largely reducing computational efforts without either integration or expensive evaluation of hypervolume indicator. The efficiency of the proposed criteria is demonstrated through the ZDT and DTLZ tests with different numbers of design variables and different complexities of objectives. The testing results exhibit that the proposed criteria have faster convergence, and enable to generate satisfactory Pareto front with fairly low computational cost compared with other conventional criteria. Finally, the best performing criterion is further applied to real-life design problems of tailor rolled blank (TRB) thin-walled structures under impact loads, which demonstrates a strong search capability for with good distribution of Pareto points, potentially providing an effective means to engineering design with strong nonlinearity and sophistication.
机译:在工程实践中,大多数设计标准需要耗时的功能评估。为了解决这种设计问题,多目标贝叶斯优化已被广泛应用于最佳帕累托解决方案的产生。然而,基于改进的功能的预期改进(EI)和超越的改善基础的较低置信度(LCB)填写标准经常批评其高计算成本。为了解决这个问题,本研究提出了一种基于LCB改进矩阵开发多目标LCB标准的新方法。具体地,通过引入三种不同的改进功能(即,超型改善,欧几里德距离和最大距离)来提出三种便宜的且有效的infill标准,该标准将改进矩阵组装到标量值,然后最大化用于顺序添加解决方案点。所有这些标准都具有闭合形式的表达,并且可以维持预期的性质,从而在没有整合或昂贵的超级指示符评估的情况下大大降低计算工作。通过ZDT和DTLZ测试证明了所提出的标准的效率,具有不同数量的设计变量和不同的目标复杂性。测试结果表明,与其他传统标准相比,所提出的标准具有更快的收敛性,并使能够以相当低的计算成本产生令人满意的帕累托前线。最后,最佳的执行标准进一步应用于撞击载荷下裁缝卷起的坯料(TRB)薄壁结构的现实设计问题,这表明了帕累托点的良好分布的强烈搜索能力,可能提供有效的方法具有强大非线性和复杂性的工程设计。

著录项

  • 来源
    《Thin-Walled Structures》 |2021年第4期|107248.1-107248.17|共17页
  • 作者单位

    Hunan Univ State Key Lab Adv Design & Mfg Vehicle Body Changsha 410082 Hunan Peoples R China|Univ Sydney Sch Aerosp Mech & Mechatron Engn Sydney NSW 2006 Australia;

    Hunan Univ State Key Lab Adv Design & Mfg Vehicle Body Changsha 410082 Hunan Peoples R China;

    Univ Technol Sydney Sch Civil & Environm Engn Sydney NSW 2007 Australia;

    Univ Sydney Sch Aerosp Mech & Mechatron Engn Sydney NSW 2006 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multiobjective Bayesian optimization; Lower confidence bound (LCB); Infill-criteria; Crashworthiness design;

    机译:多目标贝叶斯优化;较低的置信度(LCB);填筑标准;耐火材料设计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号