首页> 外文期刊>IEEE transactions on evolutionary computation >Expected Improvement Matrix-Based Infill Criteria for Expensive Multiobjective Optimization
【24h】

Expected Improvement Matrix-Based Infill Criteria for Expensive Multiobjective Optimization

机译:昂贵多目标优化的基于预期改进矩阵的填充准则

获取原文
获取原文并翻译 | 示例

摘要

The existing multiobjective expected improvement (EI) criteria are often computationally expensive because they are calculated using multivariate piecewise integrations, the number of which increases exponentially with the number of objectives. In order to solve this problem, this paper proposes a new approach to develop cheap-to-evaluate multiobjective EI criteria based on the proposed EI matrix (EIM). The elements in the EIM are the single-objective EIs that the studying point has beyond each Pareto front approximation point in each objective. Three multiobjective criteria are developed by combining the elements in the EIM into scalar functions in three different ways. These proposed multiobjective criteria are calculated using only 1-D integrations, whose number increases linearly with respect to the number of objectives. Moreover, all the three criteria are derived in closed form expressions, thus are significantly cheaper to evaluate than the state-of-the-art multiobjective criteria. The efficiencies of the proposed criteria are validated through 12 test problems. Besides the computational advantage, the proposed multiobjective EI criteria also show competitive abilities in approximating the Pareto fronts of the chosen test problems compared against the state-of-the-art multiobjective EI criteria.
机译:现有的多目标预期改进(EI)标准通常在计算上昂贵,因为它们是使用多元分段积分计算的,分段积分的数量随目标数量的增加而呈指数增长。为了解决这个问题,本文提出了一种新方法,可以基于提出的EI矩阵(EIM)来开发廉价,可评估的多目标EI准则。 EIM中的元素是研究目标超出每个目标中每个Pareto前沿逼近点的单目标EI。通过以三种不同方式将EIM中的元素组合为标量函数,可以开发出三个多目标标准。这些建议的多目标标准仅使用一维积分进行计算,一维积分的数量相对于目标数量呈线性增加。而且,所有这三个标准都是以封闭形式表达的,因此,与最新的多目标标准相比,评估起来便宜得多。通过12个测试问题验证了提出的标准的效率。除了计算优势外,与最新的多目标EI标准相比,拟议的多目标EI标准还显示出在逼近所选测试问题的Pareto前沿方面的竞争能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号