首页> 外文期刊>IEEE transactions on evolutionary computation >Expected Improvement of Penalty-Based Boundary Intersection for Expensive Multiobjective Optimization
【24h】

Expected Improvement of Penalty-Based Boundary Intersection for Expensive Multiobjective Optimization

机译:昂贵的多目标优化的基于惩罚的边界交叉点的预期改进

获取原文
获取原文并翻译 | 示例

摘要

Computationally expensive multiobjective optimization problems are difficult to solve using solely evolutionary algorithms (EAs) and require surrogate models, such as the Kriging model. To solve such problems efficiently, we propose infill criteria for appropriately selecting multiple additional sample points for updating the Kriging model. These criteria correspond to the expected improvement of the penalty-based boundary intersection (PBI) and the inverted PBI. These PBI-based measures are increasingly applied to EAs due to their ability to explore better nondominated solutions than those that are obtained by the Tchebycheff function. In order to add sample points uniformly in the multiobjective space, we assign territories and niche counts to uniformly distributed weight vectors for evaluating the proposed criteria. We investigate these criteria in various test problems and compare them with established infill criteria for multiobjective surrogate-based optimization. Both proposed criteria yield better diversity and convergence than those obtained with other criteria for most of the test problems.
机译:仅使用进化算法(EA)很难解决计算上昂贵的多目标优化问题,并且需要诸如克里格模型的替代模型。为了有效解决此类问题,我们提出了填充标准,用于适当选择多个其他采样点以更新Kriging模型。这些标准对应于基于罚分的边界交点(PBI)和反向PBI的预期改进。这些基于PBI的措施越来越多地应用于EA,因为它们具有探索比Tchebycheff函数获得的解决方案更好的非支配解决方案的能力。为了在多目标空间中均匀地添加采样点,我们将区域和利基计数分配给均匀分布的权重向量,以评估建议的标准。我们调查各种测试问题中的这些标准,并将其与基于多目标代理优化的已建立填充标准进行比较。与大多数其他测试问题的其他标准相比,这两个提议的标准都具有更好的多样性和收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号