首页> 外文期刊>Theory of computing systems >Longest Increasing Subsequence under Persistent Comparison Errors
【24h】

Longest Increasing Subsequence under Persistent Comparison Errors

机译:在持久的比较错误下的最长延长随后

获取原文
获取原文并翻译 | 示例

摘要

We study the problem of computing a longest increasing subsequence in a sequence S of n distinct elements in the presence of persistent comparison errors. In this model, Braverman and Mossel (Noisy sorting without resampling, SODA 2008, pages 268-276, 2008) every comparison between two elements can return the wrong result with some fixed (small) probability p, and comparisons cannot be repeated. Computing the longest increasing subsequence exactly is impossible in this model, therefore, the objective is to identify a subsequence that (ⅰ) is indeed increasing and (ⅱ) has a length that approximates the length of the longest increasing subsequence. We present asymptotically tight upper and lower bounds on both the approximation factor and the running time. In particular, we present an algorithm that computes an O(log n)-approximation in O(n log n) time, with high probability. This approximation relies on the fact that we can approximately sort (Geissmann et al. Optimal Sorting with Persistent Comparison Errors, ArXiv e-prints 1804.07575, 2018) n elements in O(n log n) time such that the maximum dislocation of an element is O(log n). For the lower bounds, we prove that (ⅰ) there is a set of sequences, such that on a sequence picked randomly from this set every algorithm must return an Ω (log n)-approximation with high probability, and (ⅱ) any log n-approximation algorithm for longest increasing subsequence requires Ω(n log n) comparisons, even in the absence of errors.
机译:我们研究了在存在持久的比较误差的情况下在N个不同元素的序列S中计算最长增加的子序列的问题。在这个模型中,Braverman和Mossel(没有重采样的嘈杂排序,SODA 2008,第268-276,2008页)两个元素之间的每一个比较都可以用一些固定(小)概率P返回错误的结果,并且无法重复比较。计算该模型中不可能计算最长的随后是不可能的,因此,目的是识别(Ⅰ)确实增加的子序列,并且(Ⅱ)具有近似于最长的随后的长度的长度。我们在近似因子和运行时间上呈现渐近的上层和下限。特别是,我们介绍了一种计算O(n log n)的算法,在o(n log n)时间内,具有很高的概率。这种近似依赖于我们可以大致排序的事实(Geissmann等人。使用持久比较错误的最佳排序,Arxiv E-Prints 1804.07575,2018)在O(n log n)中的n个元素,使得元素的最大脱位是o(log n)。对于下限,我们证明(Ⅰ)有一组序列,使得在从该设置随机拾取的序列上,每算法必须返回Ω(log n) - 具有高概率,并且(Ⅱ)任何日志即使在没有错误的情况下,对于最长的升高后续的N-近似算法需要ω(n log n)比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号