首页> 外文期刊>Theory of computing systems >Computing Parameters of Sequence-Based Dynamic Graphs
【24h】

Computing Parameters of Sequence-Based Dynamic Graphs

机译:基于序列的动态图的计算参数

获取原文
获取原文并翻译 | 示例

摘要

We present a general framework for computing parameters of dynamic networks which are modelled as a sequence G=(G1,G2,...,G) of static graphs such that Gi=(V,Ei) represents the network topology at time i and changes between consecutive static graphs are arbitrary. The framework operates at a high level, manipulating the graphs in the sequence as atomic elements with two types of operations: a composition operation and a test operation. The framework allows us to compute different parameters of dynamic graphs using a common high-level strategy by using composition and test operations that are specific to the parameter. The resulting algorithms are optimal in the sense that they use only O() composition and test operations, where is the length of the sequence. We illustrate our framework with three minimization problems, bounded realization of the footprint, temporal diameter, and round trip temporal diameter, and with T-interval connectivity which is a maximization problem. We prove that the problems are in NC by presenting polylogarithmic-time parallel versions of the algorithms. Finally, we show that the algorithms can operate online with amortized complexity (1) composition and test operations for each graph in the sequence.
机译:我们提供了一个用于计算动态网络参数的通用框架,该框架建模为静态图的序列G =(G1,G2,...,G),使得Gi =(V,Ei)表示时间i和连续静态图之间的变化是任意的。该框架在较高级别上运行,通过两种类型的操作将序列中的图作为原子元素进行操作:合成操作和测试操作。该框架允许我们使用通用的高级策略通过使用特定于参数的合成和测试操作来计算动态图的不同参数。从某种意义上说,所得算法是最佳的,因为它们仅使用O()组成和测试操作,其中的长度为。我们用三个最小化问题,即足迹,时间直径和往返时间直径的有界实现,以及T间隔连通性(这是一个最大化问题)来说明我们的框架。通过提出算法的多对数时间并行版本,我们证明了问题出在NC中。最后,我们证明了该算法可以按摊余的复杂度(1)进行在线操作,并且可以对序列中的每个图形进行测试操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号