首页> 外文期刊>Theory of computing systems >Branching Time Logics BT L_(N,N~(-1))~(U,S)(Z)_α with Operations Until and Since Based on Bundles of Integer Numbers, Logical Consecutions,Deciding Algorithms
【24h】

Branching Time Logics BT L_(N,N~(-1))~(U,S)(Z)_α with Operations Until and Since Based on Bundles of Integer Numbers, Logical Consecutions,Deciding Algorithms

机译:分支时间逻辑BT L_(N,N〜(-1))〜(U,S)(Z)_α具有直到整数和整数整数,逻辑连续,决定算法的运算前后

获取原文
获取原文并翻译 | 示例

摘要

This paper is intended as an attempt to describe logical consequence in branching time logics. We study temporal branching time logics BT L_(N,N~(-1))~(U,S)(Z)_α which use the standard operations Until and Next and dual operations Since and Previous (LTL, as standard, uses only Until and Next). Temporal logics BT L_(N,N~(-1))~(U,S)(Z)_α are generated by semantics based on Kripke/Hinttikka structures with linear frames of integer numbers Z with a single node (glued zeros). For BT L_(N,N~(-1))~(U,S)(Z)_α, the permissible branching of the node is limited by a (where 1 ≤ α ≤ ω). We prove that any logic BT L_(N,N~(-1))~(U,S)(Z)_α is decidable w.r.t. admissible consecutions (inference rules), i.e. we find an algorithm recognizing consecutions admissible in BT L_(N,N~(-1))~(U,S)(Z)_α. As a consequence, it implies that BT L_(N,N~(-1))~(U,S)(Z)_α itself is decidable and solves the satisfiability problem.
机译:本文旨在描述分支时间逻辑中的逻辑结果。我们研究时间分支时间逻辑BT L_(N,N〜(-1))〜(U,S)(Z)_α,它们使用标准操作``直到''和``下一个''以及双重操作``自上一个''和``上一个''(LTL)作为标准,仅使用直到和下一个)。时态逻辑BT L_(N,N〜(-1))〜(U,S)(Z)_α是基于Kripke / Hinttikka结构的语义生成的,该结构具有带有单个节点(胶合零)的整数Z的线性框架。对于BT L_(N,N〜(-1))〜(U,S)(Z)_α,节点的允许分支受到a(其中1≤α≤ω)的限制。我们证明任何逻辑BT L_(N,N〜(-1))〜(U,S)(Z)_α都是可判定的。可允许的连续性(推理规则),即我们找到一种算法,该算法可识别BT L_(N,N〜(-1))〜(U,S)(Z)_α中可允许的连续性。因此,这意味着BT L_(N,N〜(-1))〜(U,S)(Z)_α本身是可确定的,并解决了可满足性问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号