首页> 外文期刊>Theory of computing systems >On Optimal Heuristic Randomized Semidecision Procedures, with Applications to Proof Complexity and Cryptography
【24h】

On Optimal Heuristic Randomized Semidecision Procedures, with Applications to Proof Complexity and Cryptography

机译:最优启发式随机半判决程序及其在证明复杂度和密码学上的应用

获取原文
获取原文并翻译 | 示例

摘要

The existence of an optimal prepositional proof system is a major open question in proof complexity; many people conjecture that such systems do not exist. Krajicek and Pudlak (J- Symbol. Logic 54(3): 1063, 1989) show that this question is equivalent to the existence of an algorithm that is optimal on all propositional tautologies. Monroe (Theor. Comput. Sci. 412(4-5):478, 2011) recently presented a conjecture implying that such an algorithm does not exist. We show that if one allows errors, then such optimal algorithms do exist. The concept is motivated by the notion of heuristic algorithms. Namely, we allow an algorithm, called a heuristic acceptor, to claim a small number of false "theorems" and err with bounded probability on other inputs. The amount of false "theorems" is measured according to a polynomial-time samplable distribution on non-tautologies. Our result remains valid for all recursively enumerable languages and can also be viewed as the existence of an optimal weakly automatizable heuristic proof system. The notion of a heuristic acceptor extends the notion of a classical acceptor; in particular, an optimal heuristic acceptor for any distribution simulates every classical acceptor for the same language. We also note that the existence of a co-NP-language L with a polynomial-time samplable distribution on L that has no polynomial-time heuristic acceptors is equivalent to the existence of an infinitely-often one-way function.
机译:最优介词证明系统的存在是证明复杂性的主要问题。许多人猜测这样的系统不存在。 Krajicek和Pudlak(J- Symbol。Logic 54(3):1063,1989)表明,这个问题等同于存在一种对所有命题重言式都最优的算法。 Monroe(Theor。Comput。Sci。412(4-5):478,2011)最近提出了一个推测,暗示着这种算法不存在。我们证明,如果允许错误,那么确实存在这种最佳算法。该概念受启发式算法概念的启发。即,我们允许一种称为启发式接受器的算法,在其他输入上以有限的概率声明少量错误的“定理”和错误。错误的“定理”的数量是根据非重言式上的多项式时间可简化分布来度量的。我们的结果对于所有递归可枚举的语言仍然有效,也可以视为存在最佳的弱可自动化启发式证明系统。启发式接受器的概念扩展了经典接受器的概念。特别是,针对任何分布的最佳启发式接受器都会模拟同一语言的每个经典接受器。我们还注意到,在L上具有多项式时间可简化分布的共NP语言L的存在,它没有多项式时间启发式接受器,这等同于一个无限常单向函数的存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号