首页> 外文期刊>Theory of computing systems >A Buechi-Like Theorem for Weighted Tree Automata over Multioperator Monoids
【24h】

A Buechi-Like Theorem for Weighted Tree Automata over Multioperator Monoids

机译:多算子半群上加权树自动机的Buechi类定理

获取原文
获取原文并翻译 | 示例

摘要

A multioperator monoid A is a commutative monoid with additional operations on its carrier set. A weighted tree automaton over A is a finite state tree automaton of which each transition is equipped with an operation of A. We define M-expressions over A in the spirit of formulas of weighted monadic second-order logics and, as our main result, we prove that if A is absorptive, then the class of tree series recognizable by weighted tree automata over A coincides with the class of tree series definable by M-expressions over A. This result implies the known fact that for the series over semirings recognizability by weighted tree automata is equivalent with definability in syntactically restricted weighted monadic second-order logic. We prove this implication by providing two purely syntactical transformations, from M-expressions into formulas of syntactically restricted weighted monadic second-order logic, and vice versa.
机译:多算子monoid是在其载波集上具有附加运算的可交换monoid。 A上的加权树自动机是一个有限状态树自动机,每个过渡都配备A的操作。我们根据加权一元二阶逻辑公式的精神定义A上的M表达式,作为主要结果,我们证明如果A是吸收性的,则A上的加权树自动机可识别的树系列的类别与A上的M表达式可定义的树系列的类别重合。这一结果暗示了已知的事实,即关于半环的系列可通过加权树自动机在语法上受限的加权单子二阶逻辑中等同于可定义性。我们通过提供两个纯粹的句法转换来证明这种含义,从M表达式到句法受限加权一元二阶逻辑的公式,反之亦然。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号