【24h】

Sofic Tree-Shifts

机译:索菲克树移

获取原文
获取原文并翻译 | 示例

摘要

We introduce the notion of sofic tree-shifts which corresponds to symbolic dynamical systems of infinite ranked trees accepted by finite tree automata. We show that, contrary to shifts of infinite sequences, there is no unique reduced deterministic irreducible tree automaton accepting an irreducible sofic tree-shift, but that there is a unique synchronized one, called the Fischer automaton of the tree-shift. We define the notion of almost of finite type tree-shift which are sofic tree-shifts accepted by a tree automaton which is both deterministic and co-deterministic with a finite delay. It is a meaningful intermediate dynamical class in between irreducible finite type tree-shifts and irreducible sofic tree-shifts. We characterize the Fischer automaton of an almost of finite type tree-shift and we design an algorithm to check whether a sofic tree-shift is almost of finite type. We prove that the Fischer automaton is a topological conjugacy invariant of the underlying irreducible sofic tree-shift.
机译:我们介绍了sofic树移的概念,它对应于有限树自动机所接受的无限排名树的符号动力学系统。我们证明,与无限序列的移位相反,没有唯一的减少的确定性不可约树自动机接受不可约的sofic树移,但是有一个唯一的同步树,称为费希尔自动树移。我们定义了几乎有限类型树移位的概念,它们是树型自动机接受的树状树移位,树型自动机既具有确定性又具有有限延迟的共确定性。它是不可约的有限类型树移位和不可约的索非夫树移位之间的有意义的中间动力学类。我们刻画了几乎有限类型的树移位的费歇尔自动机,并设计了一种算法来检查sofic树木移位是否几乎是有限类型的。我们证明了Fischer自动机是基础不可约Sofic树移的拓扑共轭不变量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号