首页> 外文会议>Computer science - theory and applications >Sofic and Almost of Finite Type Tree-Shifts
【24h】

Sofic and Almost of Finite Type Tree-Shifts

机译:Sofic和几乎有限类型的树移位

获取原文
获取原文并翻译 | 示例

摘要

We introduce the notion of sofic tree-shifts which corresponds to symbolic dynamical systems of infinite trees accepted by finite tree automata. We show that, contrary to shifts of infinite sequences, there is no unique minimal deterministic irreducible tree automaton accepting an irreducible sofic tree-shift, but that there is a unique synchronized one, called the Shannon cover of the tree-shift. We define the notion of almost finite type tree-shift which is a meaningful intermediate dynamical class in between irreducible finite type tree-shifts and irreducible sofic tree-shifts. We characterize the Shannon cover of an almost finite type tree-shift and we design an algorithm to check whether a sofic tree-shift is almost of finite type.
机译:我们介绍了sofic树移的概念,它对应于有限树自动机接受的无限树的符号动力学系统。我们证明,与无限序列的移位相反,没有唯一的最小确定性不可约树自动机接受不可约的sofic树形移位,但是有一个独特的同步树,称为树形移位的Shannon覆盖。我们定义了几乎有限类型的树移位的概念,这是在不可约的有限类型树移位和不可约的sofic树移位之间的有意义的中间动力学类。我们描述了几乎有限类型的树移位的香农覆盖,并设计了一种算法来检查sofic树移位是否几乎是有限类型的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号