首页> 外文期刊>Theory of computing systems >An Improved Approximation Scheme for Variable-Sized Bin Packing
【24h】

An Improved Approximation Scheme for Variable-Sized Bin Packing

机译:可变大小装箱的一种改进的近似方案

获取原文

摘要

The Variable-Sized Bin Packing Problem (abbreviated as VSBPP or VBP) is a well-known generalization of the NP-hard Bin Packing Problem (BP) where the items can be packed in bins of M given sizes. The objective is to minimize the total capacity of the bins used. We present an asymptotic approximation scheme (AFPTAS) for VBP and BP with performance guarantee A(epsilon)(I) <= (1 + epsilon) OPT (I) + O(log(2)(1/epsilon)) for any problem instance I and any epsilon > 0. The additive term is much smaller than the additive term of already known AFPTAS. The running time of the algorithm is O (1/epsilon(6)log(1/epsilon) + (log(1/epsilon)n)for BP and O (1/epsilon(6)log(2)(1/epsilon) + M + log(1/epsilon)n) for VBP, which is an improvement to previously known algorithms. Many approximation algorithms have to solve subproblems, for example instances of the Knapsack Problem (KP) or one of its variants. These subproblems - like KP - are in many cases NP-hard. Our AFPTAS for VBP must in fact solve a generalization of KP, the Knapsack Problem with Inversely Proportional Profits (KPIP). In this problem, one of several knapsack sizes has to be chosen. At the same time, the item profits are inversely proportional to the chosen knapsack size so that the largest knapsack in general does not yield the largest profit. We introduce KPIP in this paper and develop an approximation scheme for KPIP by extending Lawler's algorithm for KP. Thus, we are able to improve the running time of our AFPTAS for VBP.
机译:可变大小的装箱问题(缩写为VSBPP或VBP)是NP硬装箱问题(BP)的众所周知的概括,其中可以将物品装在M个给定大小的箱中。目的是使所用垃圾箱的总容量最小化。我们提出了一种VBP和BP渐近逼近方案(AFPTAS),对于任何问题,其性能保证A(epsilon)(I)<=(1 + epsilon)OPT(I)+ O(log(2)(1 / epsilon))实例I和任何大于0的epsilon。相加项比已知的AFPTAS的相加项小得多。该算法的运行时间为BP的O(1 / epsilon(6)log(1 / epsilon)+(log(1 / epsilon)n)和O(1 / epsilon(6)log(2)(1 / epsilon )+ M + log(1 / epsnon)n,这是对先前已知算法的改进,许多近似算法必须解决子问题,例如背包问题(KP)或其变体之一的实例。像KP一样,在很多情况下都是NP困难的,我们针对VBP的AFPTAS实际上必须解决KP的泛化,即具有反比例利润的背包问题(KPIP),在此问题中,必须选择几种背包尺寸之一。同时,物品的利润与所选背包的大小成反比,因此一般来说最大的背包不会产生最大的利润,因此本文引入了KPIP,并通过扩展Lawler的KP算法来开发KPIP的近似方案。因此,我们能够缩短AFPTAS for VBP的运行时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号