首页> 外文期刊>The Visual Computer >A sparse coding approach for local-to-global 3D shape description
【24h】

A sparse coding approach for local-to-global 3D shape description

机译:局部到全局3D形状描述的稀疏编码方法

获取原文
获取原文并翻译 | 示例

摘要

The definition of reliable shape descriptors is an essential topic for 3D object retrieval. In general, two main approaches are considered: global, and local. Global approaches are effective in describing the whole object, while local ones are more suitable to characterize small parts of the shape. Recently some strategies to combine these two approaches have been proposed which are mainly concentrated to the so-called bag of words paradigm. With this paper we address this problem and propose an alternative strategy that goes beyond the bag of word approach. In particular, a sparse coding technique is exploited for the 3D domain: a set of local shape descriptors are collected from the shape, and then a dictionary is trained as generative model. In this fashion the dictionary is used as global shape descriptor for shape retrieval purposes. Several experiments are performed on standard databases in order to evaluate the proposed method in challenging situations like the case of 'SHREC 2011: robustness benchmark' where strong shape transformations are included, and the case of 'SHREC 2007: partial matching track' where composite models are considered in the query phase. A drastic improvement of the proposed method is observed by showing that sparse coding approach is particularly suitable for local-to-global description and outperforms other approaches such as the bag of words.
机译:可靠的形状描述符的定义是3D对象检索的重要主题。通常,考虑两种主要方法:全局和局部。全局方法可有效描述整个对象,而局部方法更适合于表征形状的小部分。最近,已经提出了将这两种方法结合起来的一些策略,这些策略主要集中在所谓的词袋范例。在本文中,我们解决了这个问题,并提出了一种超越单词方法的替代策略。特别是,针对3D域采用了稀疏编码技术:从形状中收集了一组局部形状描述符,然后将字典训练为生成模型。以这种方式,字典用作全局形状描述符以用于形状检索。在标准数据库上进行了几次实验,以评估挑战性情况下的建议方法,例如“ SHREC 2011:稳健性基准”(其中包含强的形状转换)和“ SHREC 2007:部分匹配轨迹”(其中使用复合模型)在查询阶段被考虑。通过显示稀疏编码方法特别适用于局部到全局描述,并且优于其他方法(如单词袋),可以观察到所提出方法的显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号