首页> 外文期刊>Knowledge-Based Systems >Graph regularized sparse coding for 3D shape clustering
【24h】

Graph regularized sparse coding for 3D shape clustering

机译:用于3D形状聚类的图正则化稀疏编码

获取原文
获取原文并翻译 | 示例

摘要

Feature descriptors have become an increasingly important tool in shape analysis. Features can be extracted and subsequently used to design robust signatures for shape retrieval, correspondence, classification and clustering. In this paper, we present a graph-theoretic framework for 3D shape clustering using the biharmonic distance map and graph regularized sparse coding. While this work focuses primarily on clustering, our approach is fairly general and can be used to tackle other 3D shape analysis problems. In order to seamlessly capture the similarity between feature descriptors, we perform shape clustering on mid-level features that are generated via graph regularized sparse coding. Extensive experiments are carried out on three standard 3D shape benchmarks to demonstrate the much better performance of the proposed clustering approach in comparison with recent state-of-the-art methods. (C) 2015 Elsevier B.V. All rights reserved.
机译:特征描述符已成为形状分析中越来越重要的工具。可以提取特征,然后将其用于设计用于形状检索,对应,分类和聚类的鲁棒签名。在本文中,我们提出了一种使用双谐波距离图和图正则化稀疏编码的3D形状聚类的图论框架。尽管这项工作主要集中在聚类上,但我们的方法相当笼统,可用于解决其他3D形状分析问题。为了无缝捕获特征描述符之间的相似性,我们对通过图正则化稀疏编码生成的中级特征执行形状聚类。在三个标准的3D形状基准上进行了广泛的实验,以证明与最近的最新方法相比,所提出的聚类方法的性能要好得多。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号