首页> 外文期刊>The Visual Computer >Robust tracking via monocular active vision for an intelligent teaching system
【24h】

Robust tracking via monocular active vision for an intelligent teaching system

机译:通过单眼主动视觉对智能教学系统进行稳健跟踪

获取原文
获取原文并翻译 | 示例

摘要

The research of this paper investigates a practical intelligent tracking teaching system, addressing the problem of teacher detection and tracking via monocular active vision in real time. The split lines and position-based visual servo rules are created to realize the robust and stable tracking, which is designed to keep the tracked teacher in the middle of image with a fixed size by automatically controlling a pan/tilt/zoom monocular camera in either rostrum region or other regions in the classroom. Face tracking in rostrum region is initiated by a face detector based on Adaboost followed by a novel long-term tracking algorithm named as informative random fern-tracking-learning-detection (IRF-TLD), which has advantages for its high accuracy and low memory requirement using real-valued feature and Gaussian random projection. Moreover, Gaussian mixture model can be automatically started to detect the teacher's movement when face tracking fails or stand-up students are detected. Experimental results on many benchmark sequences, which include various challenges for tracking, such as occlusion, illumination and pose variations, and scaling, have demonstrated the superior performance of the proposed IRF-TLD method when compared with several state-of-the-art tracking algorithms. Extensive experiments in a series of challenging real classroom scenarios also demonstrate the effectiveness of the complete system.
机译:本文的研究旨在研究一种实用的智能跟踪教学系统,通过单眼主动视觉实时解决教师的检测和跟踪问题。创建了分割线和基于位置的视觉伺服规则,以实现强大而稳定的跟踪,该跟踪旨在通过自动控制任一镜头中的摇摄/倾斜/变焦单眼相机,将被跟踪的教师保持在具有固定大小的图像中间讲台区域或教室中的其他区域。讲台区域的面部跟踪是由基于Adaboost的面部检测器启动的,然后是一种称为信息随机蕨跟踪学习检测(IRF-TLD)的新型长期跟踪算法,该算法具有准确性高和内存低的优点需求使用实值特征和高斯随机投影。此外,当面部跟踪失败或检测到站立学生时,高斯混合模型可以自动启动以检测教师的动作。在许多基准序列上的实验结果,其中包括跟踪的各种挑战,例如遮挡,照明和姿势变化以及缩放,证明了与几种最新跟踪相比,IRF-TLD方法的优越性能算法。在一系列具有挑战性的真实教室场景中进行的大量实验也证明了整个系统的有效性。

著录项

  • 来源
    《The Visual Computer》 |2016年第11期|1379-1394|共16页
  • 作者单位

    Beihang Univ, Sch Instrumentat Sci & Optoelect Engn, Lab Precis Optomechatron Technol, 37 Xueyuan Rd, Beijing 100191, Peoples R China;

    Beihang Univ, Sch Instrumentat Sci & Optoelect Engn, Lab Precis Optomechatron Technol, 37 Xueyuan Rd, Beijing 100191, Peoples R China;

    Univ Missouri, Dept Elect & Comp Engn, Columbia, MO 65211 USA;

    China Elect Technol Grp Corp, Software Syst Res Dept, Res Inst 38, 199 Xiangzhang Ave, Hefei 230088, Anhui, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Long-term tracking; Informative random fern; Monocular active vision; Intelligent tracking teaching system;

    机译:长期跟踪;信息随机蕨类;单眼主动视觉;智能跟踪教学系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号