首页> 外文期刊>The Visual Computer >Adaptive sparse coding on PCA dictionary for image denoising
【24h】

Adaptive sparse coding on PCA dictionary for image denoising

机译:PCA字典上的自适应稀疏编码用于图像降噪

获取原文
获取原文并翻译 | 示例

摘要

Sparse coding is a popular technique in image denoising. However, owing to the ill-posedness of denoising problems, it is difficult to obtain an accurate estimation of the true code. To improve denoising performance, we collect the sparse coding errors of a dataset on a principal component analysis dictionary, make an assumption on the probability of errors and derive an energy optimization model for image denoising, called adaptive sparse coding on a principal component analysis dictionary (ASC-PCA). The new method considers two aspects. First, with a PCA dictionary-related observation of the probability distributions of sparse coding errors on different dimensions, the regularization parameter balancing the fidelity term and the nonlocal constraint can be adaptively determined, which is critical for obtaining satisfying results. Furthermore, an intuitive interpretation of the constructed model is discussed. Second, to solve the new model effectively, a filter-based iterative shrinkage algorithm containing the filter-based back-projection and shrinkage stages is proposed. The filter in the back-projection stage plays an important role in solving the model. As demonstrated by extensive experiments, the proposed method performs optimally in terms of both quantitative and visual measurements.
机译:稀疏编码是图像去噪中的一种流行技术。然而,由于去噪问题的不适定性,难以获得对真实代码的准确估计。为了提高去噪性能,我们在主成分分析字典上收集数据集的稀疏编码错误,对错误概率进行假设,并导出用于图像去噪的能量优化模型,称为主成分分析字典上的自适应稀疏编码( ASC-PCA)。新方法考虑了两个方面。首先,通过与PCA词典相关的不同维度上稀疏编码错误概率分布的观察,可以自适应地确定保真度项和非局部约束之间的正则化参数,这对于获得令人满意的结果至关重要。此外,讨论了所构建模型的直观解释。其次,为有效求解新模型,提出了一种基于滤波器的迭代收缩算法,该算法包含基于滤波器的反投影和收缩阶段。反投影阶段的滤波器在求解模型中起着重要作用。正如大量实验所证明的,该方法在定量和视觉测量方面均表现最佳。

著录项

  • 来源
    《The Visual Computer》 |2016年第4期|535-549|共15页
  • 作者单位

    Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Peoples R China;

    Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Peoples R China|Shandong Univ Finance & Econ, Shandong Prov Key Lab Digital Media Technol, Jinan 250014, Peoples R China;

    Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Peoples R China|Shandong Univ Finance & Econ, Shandong Prov Key Lab Digital Media Technol, Jinan 250014, Peoples R China;

    Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Peoples R China;

    Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image denoising; Sparse coding; Iterative shrinkage; Principal component analysis;

    机译:图像去噪稀疏编码迭代收缩主成分分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号