首页> 外文期刊>The Visual Computer >A framework for developing and benchmarking sampling and denoising algorithms for Monte Carlo rendering
【24h】

A framework for developing and benchmarking sampling and denoising algorithms for Monte Carlo rendering

机译:用于开发和基准化Monte Carlo渲染的采样和去噪算法的框架

获取原文
获取原文并翻译 | 示例

摘要

Although many adaptive sampling and reconstruction techniques for Monte Carlo (MC) rendering have been proposed in the last few years, the case for which one should be used for a specific scene is still to be made. Moreover, developing a new technique has required selecting a particular rendering system, which makes the technique tightly coupled to the chosen renderer and limits the amount of scenes it can be tested on to those available for that renderer. In this paper, we propose a renderer-agnostic framework for testing and benchmarking sampling and denoising techniques for MC rendering, which allows an algorithm to be easily deployed to multiple rendering systems and tested on a wide variety of scenes. Our system achieves this by decoupling the techniques from the rendering systems, hiding the renderer details behind an API. This improves productivity and allows for direct comparisons among techniques originally developed for different rendering systems. We demonstrate the effectiveness of our API by using it to instrument four rendering systems and then using them to benchmark several state-of-the-art MC denoising techniques and sampling strategies.
机译:尽管在最近几年中已经提出了许多用于蒙特卡洛(MC)渲染的自适应采样和重建技术,但仍应针对特定场景使用这种技术。此外,开发新技术需要选择特定的渲染系统,这使该技术与所选渲染器紧密耦合,并将可以对其进行测试的场景数量限制为可用于该渲染器的场景数量。在本文中,我们提出了一个与渲染器无关的框架,用于测试和基准化MC渲染的采样和去噪技术,该框架允许将算法轻松部署到多个渲染系统并在各种场景上进行测试。我们的系统通过将技术与渲染系统分离,将渲染器详细信息隐藏在API之下来实现此目的。这提高了生产率,并允许在最初为不同的渲染系统开发的技术之间进行直接比较。我们通过使用它来检测四个渲染系统,然后使用它们对几种最先进的MC去噪技术和采样策略进行基准测试,来证明我们API的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号