首页> 外文期刊>The Visual Computer >Denoising Monte Carlo renderings via a multi-scale featured dual-residual GAN
【24h】

Denoising Monte Carlo renderings via a multi-scale featured dual-residual GAN

机译:通过多尺寸特色双重甘甘型去噪蒙特卡罗渲染

获取原文
获取原文并翻译 | 示例

摘要

Monte Carlo (MC) path tracing causes a lot of noise on the rendered image at a low samples per pixel. Recently, with the help of inexpensive auxiliary buffers and the generative adversarial network (GAN), deep learning-based denoising MC rendering methods have been able to generate noise-free images with high perceptual quality in seconds. In this paper, we propose a novel GAN structure for denoising Monte Carlo renderings, called dual residual connection GAN. Our key insight is that the dual residual connections can improve the chance of the optimal feature selection and implicitly increase the number of potential interactions between modules. We also propose a multi-scale auxiliary features extraction method, aiming to make full use of the rich geometry and texture information of auxiliary buffers. Moreover, we adopt a spatial-adaptive block with the deformable convolution to help the network adapt to the variance in spatial texture and edge features. Compared with the state-of-the-art methods, our network has fewer parameters and less inference time, and the results surpass the previous in terms of visual effects and quantitative metrics.
机译:Monte Carlo(MC)路径跟踪在每个像素的低样本中导致渲染图像上的大量噪音。最近,在廉价的辅助缓冲器和生成的对抗网络(GaN)的帮助下,基于深度学习的去噪MC渲染方法已经能够在几秒钟内产生具有高感知质量的无噪声图像。在本文中,我们提出了一种用于去噪蒙特卡罗渲染的新型GAN结构,称为双重残余连接GaN。我们的关键识别是双重残差连接可以提高最佳特征选择的可能性,并隐含地增加模块之间的潜在交互的数量。我们还提出了一种多尺度辅助特征提取方法,旨在充分利用辅助缓冲区的丰富的几何和纹理信息。此外,我们采用空间自适应块,具有可变形卷积,以帮助网络适应空间纹理和边缘特征的方差。与最先进的方法相比,我们的网络具有更少的参数和较少的推理时间,并且结果在视觉效果和定量度量方面超越了先前。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号