首页> 外文期刊>The Visual Computer >Poisson noise removal of images on graphs using tight wavelet frames
【24h】

Poisson noise removal of images on graphs using tight wavelet frames

机译:使用紧小波框架去除图上图像的泊松噪声

获取原文
获取原文并翻译 | 示例

摘要

After many years of study, the subject of image denoising on the flat domain is well developed. However, many practical problems arising from different areas, such as computer vision, computer graphics, geometric modeling and medical imaging, involve images on the irregular domain sets such as graphs. In this paper, we consider Poisson and mixed Poisson-Gaussian noise removal of images on graphs. Based on the statistical characteristic of the observed noisy images, we propose a wavelet frame-based variational model to restore images on graphs. The model contains a weighted fidelity term and an -regularized term which makes additional use of the tight wavelet frame transform on graphs in order to preserve key features such as textures and edges of images. We then apply the popular alternating direction method of multipliers (ADMM) to solve the model. Finally, we provide supporting numerical experiments on graphs and compare with other denoising methods. The results on some image denoising tasks indicate the effectiveness of our method.
机译:经过多年的研究,在平坦域上图像去噪的主题已得到很好的发展。但是,来自不同领域的许多实际问题,例如计算机视觉,计算机图形,几何建模和医学成像,都涉及不规则域集上的图像,例如图形。在本文中,我们考虑对图上的图像进行泊松和混合泊松-高斯噪声去除。基于观察到的噪声图像的统计特征,我们提出了一种基于小波帧的变分模型来还原图上的图像。该模型包含一个加权保真度项和一个正则化项,该项额外利用了图上的紧小波框架变换,以保留关键特征,例如纹理和图像边缘。然后,我们应用流行的乘数交替方向方法(ADMM)来求解模型。最后,我们在图形上提供了支持的数值实验,并与其他降噪方法进行了比较。一些图像去噪任务的结果表明了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号