首页> 外文期刊>Signal processing >Wavelet frame based Poisson noise removal and image deblurring
【24h】

Wavelet frame based Poisson noise removal and image deblurring

机译:基于小波帧的泊松噪声去除和图像去模糊

获取原文
获取原文并翻译 | 示例

摘要

The recovery of sparse signal from noisy data arises in various application fields. One widely known approach for Gaussian noise image restoration with wavelet frame based sparse representation is the l_0 norm regularized variational model. In this paper, the sparse and nonconvex noncontinuous l_0 norm regularized model is proposed to recover the Poisson noise and blurred image. Then the resulted optimization problem is solved by the alternating direction method of multipliers(ADMM) scheme and two different approaches are adopted to solve the ADMM scheme in the numerical experiments. Extensive simulation results verify the convergence of the proposed algorithm and indicate that the proposed l_0 norm based nonconvex model is efficient and comparable with some state-of-the-art approaches.
机译:从噪声数据中恢复稀疏信号出现在各种应用领域。具有基于小波帧的稀疏表示的高斯噪声图像恢复的一种广为人知的方法是l_0范数正则化变分模型。本文提出了一种稀疏和非凸的非连续l_0范数正则化模型来恢复泊松噪声和模糊图像。然后,通过乘数交替方向法(ADMM)解决了优化问题,并在数值实验中采用了两种不同的方法求解ADMM方案。大量的仿真结果验证了所提出算法的收敛性,并表明所提出的基于l_0范数的非凸模型是有效的,并且可以与某些最新方法相媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号