首页> 外文期刊>The Visual Computer >Compressed sensing image reconstruction via adaptive sparse nonlocal regularization
【24h】

Compressed sensing image reconstruction via adaptive sparse nonlocal regularization

机译:自适应稀疏非局部正则化压缩感知图像重建

获取原文
获取原文并翻译 | 示例

摘要

Compressed sensing (CS) has been successfully utilized by many computer vision applications. However,the task of signal reconstruction is still challenging, especially when we only have the CS measurements of an image (CS image reconstruction). Compared with the task of traditional image restoration (e.g., image denosing, debluring and inpainting, etc.), CS image reconstruction has partly structure or local features. It is difficult to build a dictionary for CS image reconstruction from itself. Few studies have shown promising reconstruction performance since most of the existing methods employed a fixed set of bases (e.g., wavelets, DCT, and gradient spaces) as the dictionary, which lack the adaptivity to fit image local structures. In this paper, we propose an adaptive sparse nonlocal regularization (ASNR) approach for CS image reconstruction. In ASNR, an effective self-adaptive learning dictionary is used to greatly reduce artifacts and the loss of fine details. The dictionary is compact and learned from the reconstructed image itself rather than natural image dataset. Furthermore, the image sparse nonlocal (or nonlocal self-similarity) priors are integrated into the regularization term, thus ASNR can effectively enhance the quality of the CS image reconstruction. To improve the computational efficiency of the ASNR, the split Bregman iteration based technique is also developed, which can exhibit better convergence performance than iterative shrinkage/thresholding method. Extensive experimental results demonstrate that the proposed ASNR method can effectively reconstruct fine structures and suppress visual artifacts, outperforming state-of-the-art performance in terms of both the PSNR and visual measurements.
机译:压缩感测(CS)已被许多计算机视觉应用程序成功利用。然而,信号重建的任务仍然充满挑战,特别是当我们仅具有图像的CS测量值(CS图像重建)时。与传统图像恢复(例如图像去噪,去模糊和修复等)的任务相比,CS图像重建具有部分结构或局部特征。很难从其自身构建用于CS图像重建的字典。很少有研究表明有希望的重建性能,因为大多数现有方法都使用固定的一组基数(例如小波,DCT和梯度空间)作为字典,但缺乏适应图像局部结构的适应性。在本文中,我们提出了一种用于CS图像重建的自适应稀疏非局部正则化(ASNR)方法。在ASNR中,有效的自适应学习词典用于大大减少伪像和细节损失。字典是紧凑的,可以从重建的图像本身而不是自然图像数据集中学习。此外,将图像稀疏的非局部(或非局部自相似性)先验信息整合到正则化项中,因此ASNR可以有效地提高CS图像重建的质量。为了提高ASNR的计算效率,还开发了基于分裂Bregman迭代的技术,与迭代收缩/阈值方法相比,该技术具有更好的收敛性能。大量的实验结果表明,所提出的ASNR方法可以有效地重建精细结构并抑制视觉伪影,无论是在PSNR还是视觉测量方面,其性能均优于最新技术。

著录项

  • 来源
    《The Visual Computer》 |2018年第1期|117-137|共21页
  • 作者单位

    Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Jiangsu, Peoples R China;

    Univ Oulu, Ctr Machine Vis & Signal Anal, Oulu, Finland|Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian, Shaanxi, Peoples R China;

    Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, Dept Elect Sci & Engn, Nanjing 210023, Jiangsu, Peoples R China|Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Jiangsu, Peoples R China;

    Kunming Univ Sci & Technol, Sch Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Compressed sensing; Nonlocal self-similarity; Dictionary learning; Split Bregman iteration;

    机译:压缩感知;非局部自相似;字典学习;分裂Bregman迭代;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号