首页> 外文期刊>IEEE Transactions on Image Processing >Compressive Sensing Image Restoration Using Adaptive Curvelet Thresholding and Nonlocal Sparse Regularization
【24h】

Compressive Sensing Image Restoration Using Adaptive Curvelet Thresholding and Nonlocal Sparse Regularization

机译:使用自适应Curvelet阈值和非局部稀疏正则化的压缩感知图像恢复

获取原文
获取原文并翻译 | 示例

摘要

Compressive sensing (CS) is a recently emerging technique and an extensively studied problem in signal and image processing, which suggests a new framework for the simultaneous sampling and compression of sparse or compressible signals at a rate significantly below the Nyquist rate. Maybe, designing an effective regularization term reflecting the image sparse prior information plays a critical role in CS image restoration. Recently, both local smoothness and nonlocal self-similarity have led to superior sparsity prior for CS image restoration. In this paper, first, an adaptive curvelet thresholding criterion is developed, trying to adaptively remove the perturbations appeared in recovered images during CS recovery process, imposing sparsity. Furthermore, a new sparsity measure called joint adaptive sparsity regularization (JASR) is established, which enforces both local sparsity and nonlocal 3-D sparsity in transform domain, simultaneously. Then, a novel technique for high-fidelity CS image recovery via JASR is proposed—CS-JASR. To efficiently solve the proposed corresponding optimization problem, we employ the split Bregman iterations. Extensive experimental results are reported to attest the adequacy and effectiveness of the proposed method comparing with the current state-of-the-art methods in CS image restoration.
机译:压缩感测(CS)是一种新兴技术,是信号和图像处理领域中广泛研究的问题,它提出了一种同时采样和压缩稀疏或可压缩信号的新框架,其速率大大低于奈奎斯特速率。也许,设计一个反映图像稀疏先验信息的有效正则化项在CS图像恢复中起着至关重要的作用。近来,局部平滑度和非局部自相似性都导致CS图像恢复之前具有较高的稀疏性。在本文中,首先,开发了一种自适应曲波阈值准则,试图自适应地消除CS恢复过程中出现在恢复图像中的扰动,从而施加稀疏性。此外,建立了一种称为联合自适应稀疏性正则化(JASR)的新稀疏性度量,该度量同时在变换域中实施了局部稀疏性和非局部3-D稀疏性。然后,提出了一种通过JASR进行高保真CS图像恢复的新技术CS-JASR。为了有效地解决提出的相应优化问题,我们采用了分裂的Bregman迭代。据报道,广泛的实验结果证明了该方法与CS图像恢复中的最新技术相比是否足够和有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号