首页> 外文期刊>The Visual Computer >Real-time dissection of organs via hybrid coupling of geometric metaballs and physics-centric mesh-free method
【24h】

Real-time dissection of organs via hybrid coupling of geometric metaballs and physics-centric mesh-free method

机译:通过几何元球的混合耦合和以物理为中心的无网格方法实时解剖器官

获取原文
获取原文并翻译 | 示例

摘要

This paper systematically describes a real-time dissection approach for digital organs by strong coupling of geometric metaballs and physically correct mesh-free method. For organ geometry, we employ a novel hybrid model comprising both inner metaballs and high-resolution surface mesh with texture information. Through the use of metaballs, the organ interior is geometrically simplified via a set of overlapping spheres with different radii. As for digital organ's physical representation, we systematically articulate a hybrid framework to interlink metaballs with physics-driven mesh-free method based on moving least squares (MLS) shape functions. MLS approach enables the direct and rapid transition from metaball geometry to local nodal formulations, which afford potential-energy-correct physical modeling and simulation over continuum domain with physical accuracy. For soft tissue dissection, the nature of our MLS-driven mesh-free method also facilitates adaptive topology modification and cutting surface reconstruction. To expedite simulation towards real-time performance, at the numerical level, we resort to position-based dynamics to simplify physical deformation to drive metaballs participating in the mesh-free formulation. Since nodal points participating in the physical process exist temporarily only in localized regions adjacent to the cutting path, our method could warrant accurate cutting surface without sacrificing real-time computational efficiency. This hybrid dissection technique has already been integrated into a VR-based laparoscopic surgery simulator with a haptic interface.
机译:本文通过几何元球的强耦合和物理上正确的无网格方法系统地描述了一种数字器官的实时解剖方法。对于器官的几何形状,我们采用了一个新颖的混合模型,该模型同时包含内部元球和具有纹理信息的高分辨率表面网格。通过使用元球,通过一组具有不同半径的重叠球体,简化了器官内部的几何形状。至于数字器官的物理表示,我们系统地阐明了一种混合框架,以基于移动最小二乘(MLS)形状函数的物理驱动的无网格方法来链接元球。 MLS方法可实现从元球几何结构到局部结点公式的直接和快速过渡,从而在物理范围内以物理精度提供势能校正的物理建模和仿真。对于软组织解剖,我们的MLS驱动的无网格方法的性质还有助于进行自适应拓扑修改和切割表面重建。为了在数字水平上加快实时性能的仿真速度,我们求助于基于位置的动力学,以简化物理变形,以驱动超球形球参与无网格配方。由于参与物理过程的节点仅暂时存在于切割路径附近的局部区域,因此我们的方法可以保证精确的切割表面,而不会牺牲实时计算效率。这种混合解剖技术已经被集成到带有触觉界面的基于VR的腹腔镜手术模拟器中。

著录项

  • 来源
    《The Visual Computer》 |2018年第1期|105-116|共12页
  • 作者单位

    Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China;

    Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China;

    SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA;

    Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Metaballs; Mesh-free method; Digital organ; Physics-based deformation; Dissection;

    机译:元球;无网格法;数字器官;基于物理的变形;解剖;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号