首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Coupling of the mesh-free finite cloud method with the boundary element method: a collocation approach
【24h】

Coupling of the mesh-free finite cloud method with the boundary element method: a collocation approach

机译:无网格有限云方法与边界元方法的耦合:搭配方法

获取原文
获取原文并翻译 | 示例

摘要

Meshless and mesh-based methods are among the tools frequently applied in the numerical treatment of partial differential equations (PDEs). This paper presents a coupling of the meshless finite cloud method (FCM) and the standard (mesh-based) boundary element method (BEM), which is motivated by the complementary properties of both methods. While the BEM is appropriate for solving linear PDEs with constant coefficients in bounded or unbounded domains, the FCM is appropriate for either homogeneous, inhomogeneous or even nonlinear problems in bounded domains. Both techniques (FCM and BEM) use a collocation procedure in the numerical approximation. No mesh is required in the FCM subdomain and its nodal point distribution is completely independent of the BEM subdomain. The coupling approach is demonstrated for linear elasticity problems. Because both FCM and BEM employ traction-displacement relations, no transformations between forces and tractions (typical of BEM and finite element coupling) are needed. Several numerical examples are given to demonstrate the proposed approach.
机译:无网格和基于网格的方法是偏微分方程(PDE)数值处理中经常使用的工具。本文介绍了无网格有限云方法(FCM)和标准(基于网格的)边界元方法(BEM)的耦合,这是由于两种方法的互补性所致。 BEM适用于求解有界或无界域中具有恒定系数的线性PDE,而FCM适用于有界,非均匀或什至非线性问题。两种技术(FCM和BEM)在数值逼近中都使用并置过程。 FCM子域中不需要网格,并且其节点分布完全独立于BEM子域。对线性弹性问题的耦合方法进行了演示。由于FCM和BEM均采用牵引力-位移关系,因此不需要在力和牵引力之间进行转换(BEM和有限元耦合的典型值)。给出了几个数值例子来说明所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号