首页> 外文期刊>The Visual Computer >An improved landmark-driven and spatial-channel attentive convolutional neural network for fashion clothes classification
【24h】

An improved landmark-driven and spatial-channel attentive convolutional neural network for fashion clothes classification

机译:改进的地标驱动和空间通道周度卷积性神经网络,用于时尚衣服分类

获取原文
获取原文并翻译 | 示例

摘要

Fashion clothes classification encompasses spotting and identifying items of clothing in an image. This area of research has involved using deep neural networks to make an impact in the field of social media, e-commerce and fashion world. In this paper, we propose an attention-driven technique for tackling visual fashion clothes analysis in images, aiming to achieve clothing category classification and attribute prediction by producing regularised landmark layouts. For enhancing clothing classification, our fashion model incorporates two attention pipelines: landmark-driven attention and spatial-channel attention. These attention pipelines allow our model to represent multiscale contextual information of landmarks, thus improving the efficiency of classification by identifying the important features and locating where they exist in an input image. We evaluated the proposed network on two large-scale benchmark datasets: DeepFashion-C and fashion landmark detection (FLD). Experimental results show that the proposed architecture involving deep neural network outperforms other recently reported state-of-the-art techniques in the classification of fashion clothes.
机译:时尚衣服分类包括在图像中发现和识别衣物的物品。该研究领域涉及利用深神经网络对社会媒体,电子商务和时尚世界产生影响。在本文中,我们提出了一种注意力驱动的技术,用于解决图像中的视觉时尚衣服分析,旨在通过产生正规化的地标布局来实现服装类分类和属性预测。为了增强服装分类,我们的时装模特融入了两个注意管线:地标驱动的注意力和空间通道关注。这些注意力流水线允许我们的模型代表地标的多尺观上下文信息,从而通过识别重要特征来提高分类的效率,并在输入图像中定位它们的位置。我们在两个大型基准数据集上评估了所提出的网络:Deepfashion-C和时尚地标检测(FLD)。实验结果表明,涉及深度神经网络的建筑造型优于其他最近报告的时尚衣服分类的最先进技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号