首页> 外文期刊>Expert Systems with Application >Hierarchical convolutional neural networks for fashion image classification
【24h】

Hierarchical convolutional neural networks for fashion image classification

机译:分层卷积神经网络用于时尚图像分类

获取原文
获取原文并翻译 | 示例

摘要

Deep learning can be applied in various business fields for better performance. Especially, fashion-related businesses have started to apply deep learning techniques on their e-commerce such as apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The most important backbone of these applications is the image classification task. However, apparel classification can be difficult due to its various apparel properties, and complexity in the depth of categorization. In other words, multi-class apparel classification can be hard and ambiguous to separate among similar classes. Here, we find the need of image classification reflecting hierarchical structure of apparel categories. In most of the previous studies, hierarchy has not been considered in image classification when using Convolutional Neural Networks (CNN), and not even in fashion image classification using other methodologies. In this paper, we propose to apply Hierarchical Convolutional Neural Networks (H-CNN) on apparel classification. This study has contribution in that this is the first trial to apply hierarchical classification of apparel using CNN and has significance in that the proposed model is a knowledge embedded classifier outputting hierarchical information. We implement H-CNN using VGGNet on Fashion-MNIST dataset. Results have shown that when using H-CNN model, the loss gets decreased and the accuracy gets improved than the base model without hierarchical structure. We conclude that H-CNN brings better performance in classifying apparel. (C) 2018 Elsevier Ltd. All rights reserved.
机译:深度学习可以应用于各个业务领域以获得更好的性能。特别是,与时尚有关的企业已开始在其电子商务中应用深度学习技术,例如服装识别,服装搜索和检索引擎以及自动产品推荐。这些应用程序中最重要的支柱是图像分类任务。但是,由于服装的各种服装特性以及分类深度的复杂性,服装分类可能会很困难。换句话说,要在相似的类别之间进行区分,多类别的服装分类可能很难且含糊。在这里,我们发现需要通过图像分类来反映服装类别的层次结构。在以前的大多数研究中,在使用卷积神经网络(CNN)进行图像分类时,甚至在使用其他方法进行时尚图像分类时,都没有考虑层次结构。在本文中,我们建议在服装分类中应用层次卷积神经网络(H-CNN)。这项研究的贡献在于,这是首次使用CNN进行服装分层分类的试验,并且具有重要意义,因为该模型是输出分层信息的知识嵌入分类器。我们在Fashion-MNIST数据集上使用VGGNet实现H-CNN。结果表明,与没有分层结构的基础模型相比,使用H-CNN模型可以减少损失,提高准确性。我们得出的结论是,H-CNN在服装分类方面带来了更好的性能。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号