首页> 外文期刊>The Visual Computer >What we see in a photograph: content selection for image captioning
【24h】

What we see in a photograph: content selection for image captioning

机译:我们在照片中看到的:图像标题的内容选择

获取原文
获取原文并翻译 | 示例

摘要

We propose and experimentally investigate the usefulness of several features for selecting image content (objects) suitable for image captioning. The approach taken explores three broad categories of features, namely geometric, conceptual, and visual. Experiments suggest that widely known geometric 'rules' in art-aesthetics or photography (such as the golden ratio or the rule-of-thirds) and facts about the human visual system (such as its wider horizontal angle than its vertical) provide no useful information for the task. Human captioners seem to prefer large, elongated (but not in the golden ratio) objects, positioned near the image center, irrespective of orientation. Conceptually, the preferred objects are either too specific or too general, and animate things are almost always mentioned; furthermore, some evidence is found for selecting diverse objects in order to achieve maximal image coverage in captions. Visual object features such as saliency, depth, edges, entropy, and contrast, are all found to provide useful information. Beyond evaluating features in isolation, we investigate how well these are combined by performing feature and feature-category ablation studies, leading to an effective set of features which can be proven useful for operational systems. Moreover, we propose alternative ways for feature engineering and evaluation, dealing with the drawbacks of the evaluation methodology proposed in past literature.
机译:我们提出并实验研究了用于选择适合于图像标题的图像内容(对象)的若干特征的有用性。采取的方法探讨了三种广泛的特征,即几何,概念和视觉。实验表明,在艺术 - 美学或摄影(例如金色比例或三分之二)和关于人类视觉系统的事实(例如它比其垂直宽的水平角度)的事实提供了广泛的几何“规则”提供了不用的任务的信息。人的标题似乎更喜欢大,细长(但不是金色比例)物体,定位在图像中心附近,无论方向如何。概念上,优选的对象是太具体或过于普遍的,并且几乎总是提到动画的东西;此外,发现某些证据选择不同的物体,以便在标题中实现最大图像覆盖范围。视觉对象特征,如显着性,深度,边,熵和对比度,都是发现有用的信息。除了孤立的评估特征之外,我们研究了通过执行特征和特征类别消融研究的组合方式的程度,导致有效的特征集,可以证明可用于操作系统。此外,我们提出了特征工程和评估的替代方式,处理了过去文学中提出的评估方法的缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号