首页> 外文期刊>The Visual Computer >3D hand mesh reconstruction from a monocular RGB image
【24h】

3D hand mesh reconstruction from a monocular RGB image

机译:3D从单目一象的RGB图象的手网格重建

获取原文
获取原文并翻译 | 示例

摘要

Most of the existing methods for 3D hand analysis based on RGB images mainly focus on estimating hand keypoints or poses, which cannot capture geometric details of the 3D hand shape. In this work, we propose a novel method to reconstruct a 3D hand mesh from a single monocular RGB image. Different from current parameter-based or pose-based methods, our proposed method directly estimates the 3D hand mesh based on graph convolution neural network (GCN). Our network consists of two modules: the hand localization and mask generation module, and the 3D hand mesh reconstruction module. The first module, which is a VGG16-based network, is applied to localize the hand region in the input image and generate the binary mask of the hand. The second module takes the high-order features from the first and uses a GCN-based network to estimate the coordinates of each vertex of the hand mesh and reconstruct the 3D hand shape. To achieve better accuracy, a novel loss based on the differential properties of the discrete mesh is proposed. We also use professional software to create a large synthetic dataset that contains both ground truth 3D hand meshes and poses for training. To handle the real-world data, we use the CycleGAN network to transform the data domain of real-world images to that of our synthesis dataset. We demonstrate that our method can produce accurate 3D hand mesh and achieve an efficient performance for real-time applications.
机译:基于RGB图像的大多数3D手分析方法主要专注于估计手表或姿势,这不能捕获3D手形状的几何细节。在这项工作中,我们提出了一种从单目RGB图像重建3D手网格的新方法。不同于基于参数或基于姿势的方法,我们提出的方法直接估计基于图形卷积神经网络(GCN)的3D手网。我们的网络由两个模块组成:手定位和掩模生成模块,以及3D手网格重建模块。应用于基于VGG16的网络的第一模块被应用于本地化输入图像中的手区域并生成手的二进制掩模。第二模块从第一模块采用高阶特征,并使用基于GCN的网络来估计手网的每个顶点的坐标并重建3D手形状。为了实现更好的精度,提出了基于离散网格的差异性质的新损失。我们还使用专业软件来创建一个包含地面真理3D手网格和培训的大型合成数据集。为了处理真实世界的数据,我们使用Cyclegan网络将现实世界的数据域转换为合成数据集的数据域。我们展示了我们的方法可以生产精确的3D手网,并实现实时应用的有效性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号