首页> 外文期刊>Expert Systems with Application >Accurate and efficient 3D hand pose regression for robot hand teleoperation using a monocular RGB camera
【24h】

Accurate and efficient 3D hand pose regression for robot hand teleoperation using a monocular RGB camera

机译:使用单眼RGB摄像头进行机器人手遥操作的准确,高效的3D手姿回归

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a novel deep learning-based architecture, which is under the scope of expert and intelligent systems, to perform accurate real-time tridimensional hand pose estimation using a single RGB frame as an input, so there is no need to use multiple cameras or points of view, or RGB-D devices. The proposed pipeline is composed of two convolutional neural network architectures. The first one is in charge of detecting the hand in the image. The second one is able to accurately infer the tridimensional position of the joints retrieving, thus, the full hand pose. To do this, we captured our own large-scale dataset composed of images of hands and the corresponding 3D joints annotations.The proposal achieved a 3D hand pose mean error of below 5 mm on both the proposed dataset and Stereo Hand Pose Tracking Benchmark, which is a public dataset. Our method also outperforms the state-of-the-art methods.We also demonstrate in this paper the application of the proposal to perform a robotic hand teleoperation with high success. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在本文中,我们提出了一种新颖的基于深度学习的架构,该架构处于专家和智能系统的范围内,可以使用单个RGB帧作为输入来执行准确的实时三维手部姿势估计,因此无需使用多个摄像机或多个视角或RGB-D设备。拟议的管道由两种卷积神经网络架构组成。第一个负责检测图像中的手。第二个能够准确地推断出检索到的关节的三维位置,从而得出完整的手部姿势。为此,我们捕获了由手的图像和相应的3D关节注释组成的大规模数据集。该提案在所提议的数据集和``立体声手姿跟踪基准''上均实现了小于5 mm的3D手姿平均误差。是一个公共数据集。我们的方法也优于最新方法。在本文中,我们还演示了该建议在执行机器人手遥操作方面的成功应用。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号