首页> 外文期刊>The Visual Computer >Joint bilateral propagation upsampling for unstructured multi-view stereo
【24h】

Joint bilateral propagation upsampling for unstructured multi-view stereo

机译:非结构化多视图立体声的联合双侧传播上采样

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we explore a new way to accelerate and densify unstructured multi-view stereo (MVS). While many unstructured MVS algorithms have been proposed, we discover that the image-guided resizing can easily and significantly benefit their 3D reconstruction results in both efficiency and completeness. Therefore, we build our framework upon a novel selective joint bilateral upsampling and depth propagation strategy. First, we downsample the input unstructured images into lower resolution ones and perform the MVS calculation to efficiently obtain depth and normal maps from these resized pictures. Then, the proposed algorithm upsamples the normal maps with the guidance of input images, and jointly take them into consideration to recover the low-resolution depth maps into high resolution with geometry details simultaneously enriched. Finally by adaptively fusing the reconstructed depth and normal maps, we construct the final dense 3D scene. Quantitative results validate the efficiency and effectiveness of the proposed method.
机译:在本文中,我们探讨了加速和致密非结构化多视图立体声(MVS)的新方法。虽然已经提出了许多非结构化的MVS算法,但我们发现图像引导调整大小可以很容易,并显着损益它们的3D重建,这两种重建都会导致效率和完整性。因此,我们以新颖的选择性联合双边上采样和深度传播策略构建我们的框架。首先,我们将输入的非结构化图像缩小到较低的分辨率,并执行MVS计算以有效地从这些调整大小的图像获得深度和普通贴图。然后,所提出的算法使用输入图像的引导来追随正常映射,并共同考虑它们以将低分辨率深度映射恢复为同时丰富几何细节的高分辨率。最后通过自适应地融合重建的深度和普通地图,我们构建了最终密集的3D场景。定量结果验证了所提出的方法的效率和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号