首页> 外文期刊>The Visual Computer >Joint bilateral propagation upsampling for unstructured multi-view stereo
【24h】

Joint bilateral propagation upsampling for unstructured multi-view stereo

机译:非结构化多视图立体声的联合双边传播上采样

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we explore a new way to accelerate and densify unstructured multi-view stereo (MVS). While many unstructured MVS algorithms have been proposed, we discover that the image-guided resizing can easily and significantly benefit their 3D reconstruction results in both efficiency and completeness. Therefore, we build our framework upon a novel selective joint bilateral upsampling and depth propagation strategy. First, we downsample the input unstructured images into lower resolution ones and perform the MVS calculation to efficiently obtain depth and normal maps from these resized pictures. Then, the proposed algorithm upsamples the normal maps with the guidance of input images, and jointly take them into consideration to recover the low-resolution depth maps into high resolution with geometry details simultaneously enriched. Finally by adaptively fusing the reconstructed depth and normal maps, we construct the final dense 3D scene. Quantitative results validate the efficiency and effectiveness of the proposed method.
机译:在本文中,我们探索了一种加速和致密非结构化多视图立体声(MVS)的新方法。虽然已提出了许多非结构化MVS算法,但我们发现图像引导的调整大小可以轻松,显着地受益于其3D重建结果的效率和完整性。因此,我们在新颖的选择性联合双边上采样和深度传播策略上建立我们的框架。首先,我们将输入的非结构化图像下采样为较低分辨率的图像,并执行MVS计算,以从这些调整大小后的图像中高效获取深度图和法线贴图。然后,所提出的算法在输入图像的引导下对法线图进行升采样,并共同考虑它们,以将低分辨率深度图恢复为高分辨率,同时丰富几何细节。最后,通过自适应地融合重建的深度和法线贴图,我们构建了最终的密集3D场景。定量结果验证了该方法的有效性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号