首页> 外文期刊>The Visual Computer >Wavelet frame-based image restoration using sparsity, nonlocal, and support prior of frame coefficients
【24h】

Wavelet frame-based image restoration using sparsity, nonlocal, and support prior of frame coefficients

机译:使用稀疏性,非局部性和支持先验帧系数的基于小波帧的图像恢复

获取原文
获取原文并翻译 | 示例

摘要

Over the past decade, wavelet frames have been widely investigated in the field of image restoration. The success of them is largely attributed to their ability of sparsely representing piecewise smooth functions such as natural images. Classical wavelet frame models mostly are based on the sparsity prior of frame coefficients, e.g., the 1 norm or 0 norm regularizer term is commonly employed. The sparsity-promoting regularization has became so prevailing that it is desirable to explore more prior knowledge of the underlying image to achieve better recovery performance, besides the conventional sparsity prior. In this paper, we formulate a new wavelet frame-based truncated 0-2 model which simultaneously combines sparsity, nonlocal and support prior of the frame coefficients. Specifically, we focus on investigating the role of these priors play in the regularization model for image restoration problems. Extensive deblurring and denoising experiments are reported to demonstrate the effectiveness of our proposed method, not only in terms of objective PSNR and SSIM improvements over the state-of-the-art algorithms, but also subjectively producing more pleasing recovery output.
机译:在过去的十年中,小波帧已在图像恢复领域得到了广泛的研究。它们的成功很大程度上归因于其稀疏表示分段平滑功能(例如自然图像)的能力。经典的小波框架模型主要基于帧系数的稀疏性先验,例如,通常使用1范数或0范数正则项。稀疏促进正则化变得如此普遍,以至于除了常规的稀疏先验之外,还希望探索更多有关基础图像的先验知识以实现更好的恢复性能。在本文中,我们制定了一个新的基于小波帧的截断0-2模型,该模型同时结合了稀疏性,非局部性和支持先验的帧系数。具体来说,我们专注于研究这些先验在图像恢复问题的正则化模型中的作用。据报道,广泛的去模糊和去噪实验证明了我们提出的方法的有效性,不仅在客观PSNR和SSIM方面优于最新算法,而且在主观上产生了更令人满意的恢复输出。

著录项

  • 来源
    《The Visual Computer》 |2019年第2期|151-174|共24页
  • 作者单位

    Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image restoration; Wavelet frame; Support detection; Nonlocal estimation;

    机译:图像复原;小波帧;支持检测;非局部估计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号