首页> 外文期刊>The Computer journal >Neural Network-Based Approach for Predicting Trust Values Based on Non-uniform Input in Mobile Applications
【24h】

Neural Network-Based Approach for Predicting Trust Values Based on Non-uniform Input in Mobile Applications

机译:基于神经网络的移动应用中基于非均匀输入的信任值预测方法

获取原文
获取原文并翻译 | 示例

摘要

Recently, there has been much research focus on trust and reputation modelling as one of the key strategies for the formation of successful business intelligence strategies, particularly for service in mobile applications. One of the key trust modelling activities is trust prediction. During this process, the accuracy and reliability of the predicted trust values play an important role in the making of informed business decisions. Key factors to be considered at this stage are the variability and the high levels of distortion in the input series that have to be captured when predicting the trust values at a point in time in the future. In this paper, we propose a Multi-layer Feed Forward Artificial Neural Network to predict the future trust values of entities (services, agents, products etc.) for a future point in time based on data series input. We use four different non-uniform' data input series and measure the accuracy of the predicted values under different experimental scenarios for benchmarking and comparison with existing approaches. Results indicate that the model is reliable in predicting trust values even in scenarios where there are only limited data available on training the neural network and a high level of distortion is present in the input series.
机译:近年来,人们对信任和信誉建模的研究越来越多,这是成功的商业智能策略形成的关键策略之一,特别是对于移动应用程序中的服务而言。信任建模的关键活动之一是信任预测。在此过程中,预测信任值的准确性和可靠性在制定明智的业务决策中起着重要作用。在此阶段要考虑的关键因素是在预测将来某个时间点的信任值时必须捕获的输入序列的可变性和高水平的失真。在本文中,我们提出了一种多层前馈人工神经网络,用于基于数据序列输入来预测实体(服务,代理,产品等)在未来某个时间点的未来信任值。我们使用四个不同的非均匀数据输入序列,并在不同实验场景下测量预测值的准确性,以进行基准测试和与现有方法进行比较。结果表明,即使在只能用于训练神经网络的数据有限且输入序列中存在高水平失真的情况下,该模型也可以可靠地预测信任值。

著录项

  • 来源
    《The Computer journal》 |2012年第3期|p.347-378|共32页
  • 作者单位

    Digital Ecosystems and Business Intelligence (DEBI) Institute, Curtin University, Perth, Australia;

    Digital Ecosystems and Business Intelligence (DEBI) Institute, Curtin University, Perth, Australia;

    Digital Ecosystems and Business Intelligence (DEBI) Institute, Curtin University, Perth, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    trust determination; trust prediction; ANN;

    机译:信任确定;信任预测;人工神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号